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Abstract

In the recent publication [J. Geom. Phys. 33 (2000) 23], we have demonstrated that dynamics of
2 + 1 gravity can be described in terms of train tracks. Train tracks were introduced by Thurston
in connection with description of dynamics of surface automorphisms. In this work, we provide an
example of utilization of general formalism developed earlier. The complete exact solution of the
model problem describing equilibrium dynamics of train tracks on the punctured torus is obtained.
Being guided by similarities between the dynamics of two-dimensional liquid crystals and 2+ 1
gravity the partition function for gravity is mapped into that for the Farey spin chain. The Farey
spin chain partition function, fortunately, is known exactly and has been thoroughly investigated
recently. Accordingly, the transition between the pseudo-Anosov and the periodic dynamic regime
(in Thurston’s terminology) in the case of gravity is being reinterpreted in terms of phase transitions
in the Farey spin chain whose partition function is just the ratio of two Riemann zeta functions.
The mapping into the spin chain is facilitated by recognition of a special role of the Alexander
polynomial for knots/links in study of dynamics of self-homeomorphisms of surfaces. At the end of
paper, using some facts from the theory of arithmetic hyperbolic 3-manifolds (initiated by Bianchi
in 1892), we develop systematic extension of the obtained results to noncompact Riemann surfaces
of higher genus. Some of the obtained results are also useful for 3+ 1 gravity. In particular, using
the theorem of Margulis, we provide new reasons for the black hole existence in the Universe:
black holes make our Universe arithmetic, i.e. the discrete Lie groups of motion are arithmetic.
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1. Introduction and summary

The Riemann zeta functionζ(β)has been an object of intensive study in both mathematics
[1–3] and physics [4,5] for quite some time. The reason for physicists interest in this function
can be easily understood if one writes it in the form of a partition functionZ(β) given by

ζ(β) ≡ Z(β) =
∞∑
n=1

exp{−β ln n}. (1.1)

If β is interpreted as the inverse temperature then, naturally, the following questions arise:

1. What is the explicit form of the quantum mechanical Hamiltonian whose eigenvalues
En are given byEn = ln n?

2. Can such system undergo phase transition(s) if one varies the temperature? The goal
of providing answers to both questions is at the forefront of current research activities
both in physics [4,5] and mathematics. Answers to these questions are being sought in
connection with theories of random matrices and quantum chaos [4,5], non-commutative
geometry and Yang–Lee zeros [6]. According to the theory of Yang and Lee, the problem
of existence of phase transitions can be reduced to the problem of existence of zeros of
the partition function in the complexz-plane (wherez may be related to either fugacity
or the magnetic field, etc.). In the case ofZ(β), Eq. (1.1), one is also looking at analytic
behavior of the partition function in the complexβ-plane. Riemann had conjectured that

Z(1
2 + it) = 0, (1.2)

and t ∈ R, i.e. all “nontrivial” zeros of the partition functionZ(β) are located at
the critical line Reβ = 1

2. The “trivial” zeros are known [1–3] to be located atβ =
−2,−4,−6, . . . , i.e.,

Z(β = −2m) = 0, Z(β = −2m+ 1) = −B2m

2m
(1.3)

for m = 1,2, . . . and B2m being the Bernoulli numbers.

Combinations of the Riemann zeta functions are also of physical interest. In particular,
in this paper we shall be concerned with the following combination:

Ẑ(β) = ζ(β − 1)

ζ(β)
=

∞∑
n=1

φ(n)n−β, (1.4)

whereφ(n) is the Euler totient function,

φ(n) = n

(
1 − 1

p1

)
· · ·
(

1 − 1

pr

)
, (1.5)

which is just the number of numbers less thann and prime ton, provided that
n = p

m1
1 · · ·pmrr , andp1, etc. are primes with respect ton. This partition function had

appeared in mathematical physics literature in connection with the partition function for
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the number-theoretic spin chain [7–9] and in connection with calculations of the scattering
S matrix for the “leaky torus” quantum mechanical problem [10–12]. Remarkably enough,
the results for the number-theoretic spin chain can be obtained as well from earlier works
on mode locking and circle maps [13,14], e.g. see in particular [14, Eq. (30)], as the authors
of Ref. [9] acknowledge. This fact is not totally coincidental as we shall explain below (in
Sections 2 and 3) and has been already anticipated based on our earlier works [15,16] on
dynamics of 2+ 1 gravity.

In this paper, we would like to demonstrate that the partition function, Eq. (1.4), can
adequately describe statistical mechanics of Einsteinian 2+ 1 gravity if the underlying
surface is the punctured torus. The restriction to the punctured torus case is not too severe
and is motivated mainly by illustrative purposes: recall, that both the Seifert surfaces of the
figure eight and the trefoil knots are just punctured toruses [17]. This observation allows
us to make an easy connection between the dynamics of surface self-homeomorphisms and
the associated with its time evolution 3-manifolds which fiber over the circle [16]. These
manifolds are just complements of the figure eight and trefoil knots inS3, respectively. The
Seifert surfaces of more complicated knots may naturally be of higher genus but, since both
the trefoil and the figure knots belong to the category of fibered knots, only those knots
and links which are fibered and the associated with them Seifert surfaces are relevant to the
dynamics of 2+ 1 gravity [16]. The 3-manifolds associated with the figure eight and the
trefoil knots are fundamentally different: the first one is known to belong to the simplest
representative of the hyperbolic manifolds while the second corresponds to the so-called
Seifert-fibered manifolds [18]. The surface dynamics associated with the first is associated
with pseudo-Anosov type of surface self-homeomorphisms while the second one is associ-
ated with periodic self-homeomorphisms. Both types of 3-manifolds are topologically very
interesting and potentially contain wealth of useful physical information. In this work, we
only initiate their study with hope of returning to this subject in future publications.

In order for the reader to keep focus primarily on physical aspects of the problem, we feel,
that some simple explanation of what follows is appropriate at this point. To avoid repeti-
tions, we expect that our readers have some background knowledge of the results presented
in our earlier published papers [15,16]. In particular, to help our intuition, we would like
to exploit the fact that statics and dynamics of 2+ 1 gravity is isomorphic with statics and
dynamics of textures in two-dimensional liquid crystals. According to the existing literature
on liquid crystals, e.g. [19], the liquid crystalline state can be found in several phases which
physicists classify as liquid, solid, hexatic and gas. In mathematical literature the textures,
e.g. like those in liquid crystals, are known as foliations [18,19]. Dynamics of textures is
known accordingly as dynamics of foliations [20]. Some of these foliations may contain
singularities. These singularities are mistakenly being treated as Coulombic charges (while
in 2+ 1 gravity it is well documented [16,21] that these singularities do not interact) since
the nonorientable line fields [20] are being confused with the orientable vector fields. The
phase transitions in two-dimensional liquid crystals are described in terms of the phase tran-
sitions in two-dimensional Coulomb gas. These are known as the Kosterlitz–Thouless-type
transitions [22]. Although mathematically such explanation of phase transition is not sat-
isfactory, nevertheless, one has to respect the experimental data associated with the liquid
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crystalline phases. The extent to which the Kosterlitz–Thouless interpretation of phase tran-
sition is appropriate is discussed in Appendix A where it is being argued that, by analogy
with transitions in the liquid helium (where the Kosterlitz–Thouless interpretation is nor-
mally used) the dynamical phase transition in 2+ 1 gravity resemble to some extent the
Bose gas condensation type of transition. This analogy is incomplete, however, and it is
only being used for the sake of comparison with the existing literature. As Remark 4.1
indicates, the partition function of 2+ 1 gravity without any approximations can be recast
into the Lee–Yang form [6]. The calculations associated with such form require knowledge
of distribution of zeros of the Riemann zeta function and, hence, effectively, the proof of the
Riemann hypothesis. Since this proof is not yet available [5], we employ alternative meth-
ods associated with recently developed thermodynamic/statistical mechanic formalism for
description of phase transitions in the number-theoretic Farey spin chains [7–9]. To prove
that dynamical transitions in gravity can be described in terms of transitions in the Farey
spin chains several steps are required. In our earlier works [15,16], we have demonstrated
that dynamic of 2+ 1 gravity is best described in terms of dynamic of train tracks. In
Section 2, we demonstrate how dynamic of train tracks can be mapped into dynamic of
geodesic laminations. In turn, the dynamic of geodesic laminations is reformulated in terms
of the sequence of Dehn twists. This sequence is actually responsible for the dynamic in the
Teichmüller space of the punctured torus. Such dynamic is subject to the number-theoretic
constraints associated with the Markov triples. The Markov triples had been known in
physics literature for a while in connection with the trace maps [23] used for description
of quasicrystals, one-dimensional tight band Scrödinger equations, etc. In this work the
Markov triples play a somewhat different role: they make the set of closed nonperipheral
geodesics on the punctured torus discrete. Mathematically, the sequence of Dehn twists is
written in terms of the product of the “right” and the “left” 2× 2 Dehn matrices. The mod-
ulus of eigenvalues (the stretch factors) associated with such matrix product can be either
greater than one or equal to one. In the first case one is dealing with the pseudo-Anosov and
in the second, with the periodic (Seifert-fibered) dynamical regime. The results of Section
2 (for the figure eight and the trefoil knots) acquire new meaning in Section 3 where they
are reobtained with the help of the associated Alexander polynomials. The stretch factors of
Section 2 are reobtained as zeros of the related Alexander polynomials. In the same Section
3, we discuss the fiber bundle construction of 3-manifolds complementary to the figure
eight and the trefoil knots inS3. The sequence of Dehn twists, discussed in Section 2, in
this section is being associated with the operation of Dehn surgery (Dehn filing) performed
on the 3-manifold related to the figure eight knot. The stretch factors produced as a result of
such surgery are reobtained with help of the Mahler measures which allow us to reinterpret
these factors in terms of the topological entropies. Introduction of the Mahler measures, in
addition, allows us to make direct connection between the dynamical phase transitions and
the thermodynamic transitions in the sense of Yang and Lee [6]: zeros of the Alexander
polynomial play similar role in dynamics as Yang–Lee zeros in thermodynamics. In Sec-
tion 4, we provide direct connection between the results of Section 3 just described and
the statistical mechanics formalism developed for the number-theoretic Farey spin chains
[7–9]. With such connection established, dynamical phase transitions in 2+ 1 gravity can
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be treated with formalism which is more familiar to physicists. Unfortunately, this more
familiar formalism is applicable (at least at the present level of our understanding) only to
the case of punctured torus. Fortunately, the final results obtained with help of such type of
formalism can be reobtained in several different and independent ways. We discuss these
alternative ways at the end of Section 4 and in Section 5 which is entirely devoted to de-
velopment and refinements of these alternatives. The major reason of doing this lies in the
opportunity of extension of the punctured torus results to the noncompact Riemann sur-
faces of any genus. This is accomplished using some results from the scattering theory for
Poincaré (Eisenstein) series acting on 3-manifolds. These series had been recently discussed
in our earlier work, [24], to which we refer for more details. The key result of Section 4, the
partition function for the case of punctured torus, happens to coincide with the scattering
S matrix (up to unimportant constant) obtained for 3-manifolds with oneZ ⊕ Z cusp [25].
Three-manifolds containing multipleZ ⊕ Z cusps are associated with fibered links (as ex-
plained in Section 3 and in Appendix C). TheS matrix for this case has been also obtained
recently [26]. The determinant of this matrix produces the desired exact partition function
for 2+1 gravity. In addition, the formalism allows us to obtain the volumes of the associated
3-manifolds exactly. Extension of the punctured torus results to surfaces of higher genus
requires some careful analysis of the nontrivial mathematical problem of circle packing.
This fact has some profound impact at development of the whole formalism. It happens, that
such type of problems had been comprehensively studied by Bianchi already in 1892 [27]
who championed study of the arithmetic hyperbolic manifolds. The notion of arithmeticity
is rather involved. Since in physics literature (to our knowledge) it did not find its place
yet, in Appendices B and C we supply the essentials needed for the uninterrupted reading
of the main text. Surely, selection of the material in these appendices is subjective. But, it
is hoped, that interested reader will be able to restore the missing details if it is required.
The arithmeticity of 3-manifolds associated with 2+ 1 gravity stems from some very deep
results of Riley [28] and Margulis [29] which we discuss to some extent in Appendix C.
The arithmeticity leads to some restrictions on groups of motions in symmetric spaces (e.g.
hyperbolic space is symmetric space). Thanks to the Margulis Theorem C.11 and some
results of Helgason [30] and Besse [31], the notion of arithmeticity is extendable to 3+ 1
gravity as well. In the case of 2+1 gravity we demonstrate, that the very existence of black
holes makes such 2+1 Universe arithmetic. Since most of the Einstein spaces happen to be
symmetric, we expect that they are arithmetic in addition in view of the Margulis theorem
[29]. This possibility is realized in nature only if the black holes exist in our Universe. The
black holes make our Universe arithmetic.

2. From train tracks to geodesic laminations

2.1. Dynamics of train tracks on punctured torus

Dynamics of pseudo-Anosov homeomorphisms on the four punctured sphere was studied
in some detail in [32]. Closely related but more physically interesting case is associated with
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Fig. 1. Fragment of the train track dynamics on once punctured torus.

study of self-homeomorphisms of the punctured torus. The Poincaré–Hopf index theorem
requires existence of two Y-type singularities, each having index−1

2, as it is explained in
Ref. [15]. These singularities can move on the surface of the punctured torus thus giving
rise to the train tracks dynamics as depicted in Fig. 1.

From this picture it follows, that the nontrivial dynamics is effectively caused by sequence
of meridionalτm and longitudinalτl Dehn twists. Using the rules set up for dynamics of
train tracks [15], one can easily calculate the transition matrix by noticing that topologically
the state h) is the same as a) while the weights on the branches are different. This allows us
to write the following system of equations:

a′ = b + 2a, b′ = c, c′ = a + 2c. (2.1)

These results can be neatly presented in the matrix form
 a′

b′

c′


 =


 2 1 0

0 0 1
1 0 2




 ab
c


 . (2.2)

The incidence matrix just obtained can be found in Penner’s [33] article, where it was
presented without derivation. The largest eigenvalueλ is found to be

λ = 1
2(3 +

√
5). (2.3)

Sinceλ > 1, this indicates that the dynamics depicted in Fig. 1 is of pseudo-Anosov type.
We shall reobtain this result forλ below, e.g. see Eq. (2.16), and in Section 3 using totally
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different methods. In fact, the presentation above is only given for the sake of comparison
with these new methods to be discussed in Section 3. These new methods provide the most
natural connections between the dynamics of 2+ 1 gravity and the theory of knots and
3-manifolds. The remainder of this section is devoted to exposition of some mathematical
results which will be used in the rest of this paper.

2.2. The Markov triples

To begin, let us recall [15,16,18], that ageodesic laminationon a hyperbolic surfaceS is
a closed subset ofS made of union of disjoint simple geodesics. When lifted to the universal
cover, i.e. to the Poincaré discD whose boundary is a circleS1∞ at infinity, the endpoints
of the geodesic lamination determine a closed subset (actually, a Mobius strip)

E = S1∞ × S1∞ −∆

Z2
, (2.4)

where∆ is diagonal(x, x), x ∈ S1∞ and the factorZ2 reflects the fact that the circle segments
representing these geodesics are unoriented, i.e. the picture remains unchanged if the ends
of each geodesic which lie onS1∞ are interchanged. This fact has been discussed and used
already in our earlier work, [15]. Since, by definition, the lamination is made of disjoint set
of geodesics, when lifted toD, there are no circle segments (representing geodesics) which
intersect with each other. It is intuitively clear, that the dynamics of train tracks should affect
the dynamics of geodesics. We would like to make this intuitive statement more precise. To
this purpose, we notice that, when lifted to the universal cover, this dynamics causes some
homeo(diffeo)morphisms of the circleS1∞ thus making clear the connections with circle
maps and mode locking [13,14].

If G = π1(S) is the fundamental group of surfaceS, the endpoint subsetE remains
invariant under the action ofπ1(S). Suppose, that the surfaceS has boundaries, e.g. a hole
in the case of a torus. LetP v G be the set ofperipheral elements, e.g. those elements of
G which correspond to loops freely homotopic to the boundary components. In the case
of a punctured torus,G is just a free group of two generators:G = 〈a, b〉, and the subset
P is determined by the commutatoraba−1b−1 ≡ [a, b] whose trace equals to−2 [34].
Such restriction on the trace indicates that the group element [a, b] is parabolic. Parabolic
elements are always associated with cusps (punctures) on the Riemann surface (for more
details, e.g. consult Refs. [24,28]). This restriction affects the presentation of the groupG.
Using generatorsa andb one can construct a wordWr

Wr = aα1bβ1 · · · aαr bβr (2.5)

whereα1 andβr can be any integers whileαi andβi , i 6= 1, r, can be any integers, except
zero. Not all words thus constructed are different. Those words which are conjugate, i.e.
WrWl = WlWr , are considered to be equivalent. If we define the equivalence relation as
∼, then the quotientG/ ∼ can be identified with the setΩ of homotopy classes of closed
curves on the torusT [34]. Let Ω̂ be a subset ofΩ which corresponds to the nontrivial
nonperipheral simple closed curves onT . To account for the presence of a puncture, we
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require that botha andb belong toΩ̂ while [a, b] should correspond to the peripheral simple
closed curve(s). The question now arises: how to find an explicit form of the generatorsa

andb? If we require these generators to act by isometries in the Poincaré discD (or the
upper-half plane), we need to find a mapping of the groupG into the group PSL(2,R). This
can be achieved with help of the following identities (in the case of SL(2,R)):

2 + tr[a, b] = (tr a)2 + (tr b)2 + (tr ab)2 − tr a tr b tr ab, (2.6a)

tr a tr b = tr ab+ tr ab−1, (2.6b)

which had been discovered by Fricke [35]. The above identities can be analytically ex-
tended to SL(2,C) [34]. The projectivized versions of these groups, that is PSL(2,R) and
PSL(2,C), are groups of isometries of hyperbolicH 2 andH 3 spaces, respectively. Such an
extension is useful for dealing with problems discussed in our earlier work, [24], and will
be also discussed later in this work in Section 5.

Since, as we know already, tr[a, b] = −2, the above identities can be conveniently
rewritten as

x2 + y2 + z2 = xyz, (2.7)

xy = z+ w, (2.8)

where,x = tr a, y = tr b, z = tr ab andw = tr ab−1. As it is argued by Bowdich in [36]
(who, in turn, attributes it to Jorgensen [37]) the first identity, Eq. (2.7), is sufficient for
restoration of the explicit form of matricesa andb. These are given by

a = 1

z

(
xz− y x

x y

)
, b = 1

z

(
yz− x −y
−y x

)
. (2.9a)

The above matrices differ slightly from those given in [36]. This difference is essential,
however, and originates from the fact that we require deta = detb = 1. Such requirement
leads automatically to Eq. (2.7) as required. The above choice of matrices is not unique
since, e.g. Eq. (2.7) is also to be satisfied by the choice of

a = 1

z

(
y x

x xz− y

)
, (2.9b)

etc. For the integer values ofx, y andz the identity, Eq. (2.7), is known as equation for the
Markov triples discovered in the number theory by Markov [35]. Given this equation, one
is interested to obtain all integer solutions (triplesx, y andz). In mathematics literature,
sometimes, related equation is known as an equation for the Markov triples [38]. Specifically,
one introduces the following redefinitions:

x = 3m1, y = 3m2, z = 3m3,

so that Eq. (2.7) acquires the standard form

m2
1 +m2

2 +m2
3 = 3m1m2m3. (2.10)
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The simplest solution of this equation is justm1 = m2 = m3 = 1. To generate other
solutions it is sufficient to have a “seed” (m1,m2,m3) which, by definition, obeys the
Markov equation (2.10). Then, the first generation of Markov triples is given by

(m′
1,m2,m3), (m1,m

′
2,m3) and (m1,m2,m

′
3),

where

m′
1 = 3m2m3 −m1, m′

2 = 3m1m3 −m2, m′
3 = 3m1m2 −m3. (2.11)

Other solutions can be generated via mapping: (m1,m2,m3) → (−m1,−m2,m3) along
with cyclical permutation ofm1,m2 andm3. If one starts with(1,1,1) then, the Markov
tree (its part, of course) is depicted in Fig. 2.

Emergence of numbersm′
1, etc., can be easily understood if, instead of Eq. (2.10), we

would consider the following quadratic form:

f (x) = x2 − 3m2m3x +m2
2 +m2

3. (2.12)

Then, forf (x) = 0 we can identifyx = m1 andx′ = m′
1 = 3m2m3 −m1. In physics liter-

ature the dynamics of Markov triples has actually been studied already in connection with
quasicrystals [23], one-dimensional tight binding Schrödinger equations (with quasiperi-
odic potential), etc. [39], and is known as dynamics of trace maps. This dynamics can be
easily understood based on Eqs. (2.10)–(2.12). In short, one studies mapsF of the type

F :


 xy
z


 →


 3yz− x

y

z


 , (2.13)

etc., which possess an integral of motion

I (x, y, z) = x2 + y2 + z2 − 3xyz (2.14)

invariant under action ofF .
From the theory of Teichmüller spaces [40] it is known, that the lengthl(γ ) of closed

geodesics associated withγ ∈ G is given by

tr2(γ ) = 4 cosh2(1
2l(γ )). (2.15)

Let, trγ = x (ory, orz), then the Markov triple(1,1,1) corresponds to the geodesic whose
hyperbolic lengthl(γ ) is given by

l(γ ) = 2 cosh−1(3
2) = 2 ln(1

2(3 +
√

5)) = 2 lnλ, (2.16)

where in the last equality use had been made of Eq. (2.3). Obtained result provides us with
the first piece of evidence that the train tracks are directly associated with closed geodesic
laminations. Since in the case of the punctured torus the Teichmüller space coincides with
the Poincaré upper-half plane model of hyperbolic space, the Teichmüller distancedT is the
same as hyperbolic distancelH [40]. Therefore, we obtain

dT = 1
2 lnK = lH = 2 lnλ, (2.17)
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Fig. 2. Fragment of Markov tree close to the original “seed”.

which leads to the equation
√
K = λ2. (2.18)

That is the stretching factorλ is associated directly with the Teichmüller dilatation factor
K (for more details onK, please, consult our earlier work, [16]).

In the light of previous discussion, we notice that the spectrum of stretching factors is
discrete. This is reminiscent already to the energy spectrum of some quantum mechanical
system. The question arises at this point: is the stretching factorλ, defined by Eq. (2.3),
represents the maximum or the minimum among possible stretching factors? A simple
calculation based on Eq. (2.15) and Fig. 2 indicates thatλ, given by Eq. (2.15), corresponds
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to the minimum. In the case of higher genus Riemann surfaces (perhaps with punctures)
Penner [41] had demonstrated that the stretching factors are bounded from above and from
below.

Let us now obtain the explicit form of matricesa andb, given by Eqs. (2.9a) and (2.9b),
for the case whenx = y = z = 3. An easy calculation produces

a =
(

2 1
1 1

)
, b =

(
2 −1

−1 1

)
, (2.19)

yielding the trace of commutator [a, b] being equal to−2 as required. Introduce now two
basic matrices

L =
(

1 0
1 1

)
, R =

(
1 1
0 1

)
. (2.20)

The letters stand for the “left” (L) and the “right” (R) Dehn twist matrices (e.g. see Section
3 for more details). Evidently,

a = RL (2.21)

as can be seen by direct calculation. It is also not difficult to check that

b = L−1aR−1 = L−1RLR−1. (2.22)

Let us now take a note of the fact that

L−1 =
(

1 0
−1 1

)
, R−1 =

(
1 −1
0 1

)
. (2.23)

If we introduce the matrix

Î = ±
(

0 −1
1 0

)
, (2.24)

such that

Î2 = I =
(

1 0
0 1

)
, (2.25)

then, Eqs. (2.23) and (2.24) can be conveniently rewritten as

L−1 = ÎRÎ , (2.26)

R−1 = ÎLÎ , (2.27)

which also can be checked by direct calculation. Thus, obtained relations can be equivalently
presented as follows:

LÎL = R, RÎR = L, RÎL = Î , LÎR = Î . (2.28)
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Using the results just obtained, it is clear, that every wordW , e.g. see Eq. (2.5), can be
written in terms of positive powers ofL,R andÎ . Moreover, since originally we had only
matricesa andb, things can be simplified further. In particular, let us consider the word

W1 = Lα1 · · · RL· · ·LαrRβr , (2.29)

and the related word

W2 = Lα1 · · ·RÎL · · ·LαrRβr . (2.30)

We can eliminate the contributionRÎL in Eq. (2.30) by replacing it witĥI using Eq. (2.28).
If we continue to use Eq. (2.28) we can evidently get rid of allÎ factors in the middle of the
wordW2 so that in the end we have to consider only the totality of words of the typeW1

with nonnegative integer coefficients. To the totality of these words one has to add words
like ÎW1,W1Î and ÎW1Î . Since in Section 4 we shall be interested in the traces of these
words, evidently, only words of the typeW1 andÎW1 need to be considered. Incidentally,
use of Eq. (2.28) allows us to reduceb, Eq. (2.22), tob = ÎLRÎ and, hence, from now on
we shall usea = RLandb = LR. Such choice is in accord with that known in the literature
[42,43]. Moreover, to make connections with the results from knot theory and 3-manifolds
(to be discussed in Sections 3 and 5) only words of the typeW1 should be considered. This
peculiarity will be explained further below.

2.3. The Farey numbers and the Farey tesselation ofH 2

Words of the typeW1 are represented by the set of matricesM,

M =
(
α β

γ δ

)
, αδ − γβ = ±1 (2.31)

with integer coefficients. Such matrices belong to the group GL(2,Z) and play an important
role in the number theory [44]. In the number theory they are associated with the Farey
numbers. Recall that the Farey series of numbersFn is the ascending series of irreducible
fractions between 0 and 1 whose denominators do not exceedn. If p/q andr/s are two
consecutive terms (neighbors) ofFn, then

ps− qr = ±1. (2.32)

In addition, ifp/q, r/s andh/k are three consecutive terms, then the mediantr/s is obtained
via

r

s
= p ± h

q ± k
. (2.33)

Hence,α/γ andβ/δ in the matrixM correspond to the neighbors inFn. Given this infor-
mation, one can make two additional steps. First, one can letn go to±∞ [45]. Thus,

F1 : −∞,−1,0,1,∞, F2 : −∞,−2,−1,−1
2,0,

1
2,1,2,∞,etc.
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Second, by noticing that projectivisation PSL(2,R) of SL(2,R) is just an isometry ofH 2

it is advantageous to map conformally(−∞,∞) into S1∞. Once this is done, locations
of the Farey numbers onS1∞ acquire new geometrical meaning (see also Section 5.1). To
understand its significance, let us consider the Möbius-like transformations associated with
matricesL andR, i.e.

L : z′ = z

z+ 1
, R : z′ = z+ 1. (2.34)

Let us notice first that forL-type transformation

z = 0 → z′ = 0, z = ±∞ → z′ = 1, z = −1 → z′ = −∞. (2.35a)

At the same time, forR-type transformation we have

z = 0 → z′ = 1, z = ±∞ → z′ = ±∞. (2.35b)

Using these simple results, we obtain at once

b(∞) = LR(∞) = 1, a(0) = RL(0) = 1,

a(−1) = RL(−1) = −∞, b(−1) = LR(−1) = 0. (2.36)

It is instructive to depict these results graphically, e.g. see Fig. 3.
Points−∞,−1,0,1,+∞ on the circleS1∞ are just the members ofF1. These are joined

by the circular arcs (not to be mistaken for the hyperbolic geodesics which are going
to be discussed below). The arrows are in accord with the results given by Eq. (2.36).
Identifying sides of the polygon using the arrows depicted in Fig. 3 we obtain an orb-
ifold known in physics literature as “leaky torus” [12]. To construct the next level of

Fig. 3. Leaky torus in the Poincaré discD model.
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Fig. 4. Farey tesselation ofD.

Farey numbers,F2, and, for this matter,Fn, etc., let us consider the most general modular
transformation

z′ = az+ b

cz+ d
≡ M(z), (2.37)

where the integer coefficientsa, b, c, andd are subject to the constraintad− bc = 1 (to be
compared with Eqs. (2.31) and (2.32)). Using this transformation, we obtain

z = ±∞ → z′ = a

c
, z = 0 → z′ = b

d
, z = ±1 → z′ = ±a + b

±c + d
. (2.38)

But the numbersa/c andb/d are just the Farey neighbors! Using Eq. (2.33), we obtain the
following sequence of numbers:

−2 = −1 − 1

0 + 1
, −1

2
= −1 + 0

1 + 1
,

1

2
= 0 + 1

1 + 1
, 2 = 1 + 1

0 + 1
. (2.39)

If we place these numbers on the circleS1∞, we obtain all the members ofF2, etc., as it is
depicted in Fig. 4. The question arises now: what combinations ofL andR will lead us to
these numbers? Let us consider the generic case of1

2. With help of Eqs. (2.38) and (2.39),
we obtain two transformations

z′ = z

z+ 1
, z′ = az+ 1

cz+ 2
, 2a − c = 1, (2.40)

connecting, respectively, the numbers 1 and 0 with the Farey number1
2. Since botha and

b are integers, the simplest choice is to takea = 1 = c. This then produces immediately

z′ = L(z), z′ = LR(z). (2.41)

Other examples can now be constructed without problems. Evidently, each successive level
of Fn can be obtained by some application of combinations ofL’s andR’s. To make this
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procedure systematic, let us consider some Farey number, sayp/q, which has a continued
fraction expansion of the type [44]

p

q
= a0 + 1

a1 + 1

a2 + 1
a3+···

≡ [a0, a1, . . . , an], (2.42)

wherea1, . . . , an are some integers. Suppose, we would like to connect the point 0 (or∞)

with the pointp/q. To this purpose, using results given by Eq. (2.23), we need to take into
account that

x′ = L−1x = x

−x + 1
= 1

(1/x)− 1
, x′ = R−1x = x − 1. (2.43)

Using these results, it is clear that

R−a0

(
p

q

)
= 1

a1 + 1/b1
, (2.44)

where

1

b1
= 1

a2 + (1/c1)
,etc. (2.45)

Using Eqs. (2.43) and (2.44), we obtain

L−1R−a0

(
p

q

)
= 1

a1 + (1/b1)− 1
, (2.46)

and, since

L−ax = 1

(1/x)− a
, (2.47)

we may write as well, instead of Eq. (2.46),

L−a1R−a0

(
p

q

)
= 1

b1
. (2.48)

Taking into account Eq. (2.45), we also get

L−a2

(
L−a1R−a0

(
p

q

))
= a3 + 1

d1
. (2.49)

Now one has to apply to thisR−a3 in order to obtain expression similar to Eq. (2.44) so
that this process may continue. The end result will depend upon whetheran > 1 oran = 1.
Whenan > 1 we can writean = (an − 1)+ 1 and then use the operatorL−(an−1) to 1/an.
Based on the results just obtained, it should be clear by now that it is possible to construct
any Farey number starting from 0,1,−1 or±∞ with the result being some wordW of the
type

W = Lα1Rβ1 · · ·LαrRβr , (2.50)

where the exponentsα1, β1, . . . , αr , βr are related directly to numbersa1, . . . , an.
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Consistent triangulation ofH 2 (orD) invariant with respect to the action of PSL(2,Z)
can be achieved now. To this purpose first, we connect the point±∞ with the point 0

1 of
Fig. 4 with help of the equation

LRL−1R−1(−∞) = 0, (2.51)

which follows easily from Eq. (2.36). Since the points1
1 and −1

1 are mediants already, it
should be clear how to produce the rest of the triangles from these two which are basic
as it is depicted in Fig. 4. By direct observation, it is easy to notice that this figure has an
axial symmetry. It can be shown [43], that the r.h.s corresponds to words of typeW1 while
the l.h.s. corresponds to words of the typeÎW1 and that these two sets are nonoverlapping.
Hence, we shall use here and in Sections 3 and 4 only the r.h.s. of this figure. Although
lines on this figure look like geodesics, actually, they are not geodesics in a usual sense
(so that the statement made in [46], e.g. see page 566, that these lines are geodesics should
be treated with caution) as it will be explained below. Hence, the triangulation in Fig. 4
should be understood only in a topological sense (to keep track of how the Farey numbers
are related to each other). An alternative and very effective geometrical description of Farey
numbers (via the circle packing inH 2) had been proposed by Rademacher [47]. We shall
discuss it briefly in Section 5.

Although the Farey tesselation ofD depicted in Fig. 4 is helpful, it cannot be used directly
for our calculations since we are interested in geodesics related to the Markov triples.
Therefore, now we would like to relate these Markov geodesics to the Farey tesselation.
The simplest Markov geodesics are associated with matrices given by Eq. (2.19) (in view
if Eq. (2.15)). Since we require these matrices to correspond to the closed geodesics on the
Riemann surface of leaky torus, when lifted toD (orH 2), their ends must lie onS1∞ (or on
the liney = 0 in H 2 model). The location of the ends of geodesics is determined by the
fixed points equation which in the case of matrixa is given by

x = 2x + 1

x + 1
= 1 + 1

1 + 1/x
. (2.52)

Iteration of this equation leads to the periodic continued fraction expansion with period 1
[44]

x = [1̇] =
√

5 + 1

2
. (2.53)

We had used the notations of [44, p. 46], to reflect the periodicity. Surely, this result can be
obtained as well directly from the quadratic equation

x2 − x − 1 = 0, (2.54)

which is equivalent to Eq. (2.52). Eq. (2.54) has two roots

x1,2 = 1
2(1 ±

√
5). (2.55)

To recover the second root from Eq. (2.52) we have to introduce the following change of
variable:x = −(1/y), in Eq. (2.52). This then produces after a few trivial manipulations
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y = − 1

1 + 1/(1 − y)
. (2.56)

Iterating this expression, we obtain

y = − 1

1 + 1

1 + 1
1+···

. (2.57)

This is equivalent to the continued fraction expansion of1
2(1 − √

5) [44] as required.
Obtained results are special cases of general theorem proven by Series [45] which states
that

x1 = x∞ = [n1, n2, . . .], x2 = x−∞ = −1

[n0, n−1, n−2, . . .]
, (2.58)

so that in both cases we have an infinite continued fractions corresponding to irrational
numbers. In the case of fixed points for the Markov matrices the continued fractions are
always periodic [48]. This fact has profound topological significance as it will be explained
in Section 3. In the meantime, we still need to clarify the connections between the Farey
tesselation ofH 2 (orD) and the results just obtained. The comprehensive treatment of this
problem by mathematicians, surprisingly, had been performed only quite recently [42,46].
Moreover, to our knowledge, there are no similar comprehensive treatments for surfaces
of higher genus (perhaps, with exception of Ref. [49]). The major reason for utilization of
the Farey triangulation ofH 2 is exactly the same as used in approximations of irrational
numbers by the rationals which belong to the Farey series [44]. According to the theory
of numbers [44] all rational numbers are equivalent since they are connected with each
other via modular transformation, Eq. (2.37). In our case this means that the vertices of the
basic quadrangle depicted in Fig. 3 upon identification (needed for formation of the leaky
torus) all correspond to a puncture. Subsequent higher levels of the Farey tesselations do
not change this result: all Farey numbers correspond to a puncture. Hence, from here it
also follows that the ends of geodesics which correspond to the nonperipheral elements of
G are represented by the irrational numbers connected by bi infinite sequence of Möbius
transformations. In particular case of Eq. (2.52) this becomes obvious if we rewrite it in the
form

x = RL(x). (2.59)

Iterating, we obtain,

x = RLRLRL· · · (x). (2.60)

To clarify the meaning of this result, please, recall that, according to Eq. (2.21),RL = a.
The eigenvaluesλ1,2 of a can be easily found from the equation

λ2 − 3λ+ 1 = 0, (2.61)

thus producing

λ1,2 = 1
2(3 ±

√
5). (2.62)
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Not surprisingly,λ1 coincides with earlier obtained result, Eq. (2.3). These results will
acquire completely new topological meaning in Section 3.

Consider now the Möbius transformationUλ(z) given by

z′ = Uλ(z) =
(
λ1

λ2

)
z ≡ λ̂z. (2.63)

This transformation has two fixed points: z∗ = 0 andz∗ = ∞. Consider yet another Möbius
transformationW(z) such that

W(x1) = 0, W(x2) = ∞, e.g.W(z) = z− x1

z− x2
, (2.64)

wherex1 andx2 are given by Eq. (2.55). Hence, using such transformation, we obtain

WaW−1(z) = Uλ(z), (2.65)

so that Eq. (2.60) can be rewritten as

x = WaW−1WaW−1 · · · (x) = UλUλ · · ·Uλ(x). (2.66)

Therefore, indeed, in view of Eq. (2.63), we obtain the expected sequence of iterates con-
necting two fixed points. These points are the initial and the final limiting points representing
“motion” along the geodesics inH 2 which are just semicircles passing through pointsx1

andx2. It is very important to realize that in the case of a torus (and also punctured torus) the
hyperbolicH 2 plane coincides with the Teichmüller space. Hence, the “motion” along the
geodesic inH 2 coincides with the real motion in the Teichmüller space as was discussed
qualitatively in our earlier work on 2+ 1 gravity. More details will be provided in Sections
3 and 4.

Consider now the possibility of joining of two Farey numbers by the geodesics. That is,
let us consider the fixed point of equation

x = ax+ b

cx+ d
, ad− cb = 1. (2.67)

We need to look for solution of this equation only for the integer values ofa, b, c andd. It
is instructive to discuss some special cases first. Let us begin with the casec = b = 0. In
this case, we obtain

x = a

d
x. (2.68)

Although this equation looks exactly like Eq. (2.63), these equations are not the same since
according to Eq. (2.67) we should requiread = 1 which leaves us with the only choice:
a = d = ∓1. The obtained identity result indicates that the hyperbolic-like transformations
are not possible if we use just PSL(2,Z). Let us now consider the parabolic transformations,
e.g. letc = 0 then, given thatad = 1, we obtain

x = x + b. (2.69)
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This equation has only one fixed point,x∗ = ∞, typical for all parabolic transformations.
Let us now putb = 0 in Eq. (2.67). Then, again,ad = 1, and we obtain

x = x

cx+ 1
, (2.70)

thus producing another acceptable solution:x∗ = 0. Finally, letd = 0 ora = 0. In the first
case, we obtaincb = −1 so that

x = ax− 1

x
, (2.71)

thus leading to the equation

x1,2 = a

2
± 1

2

√
a2 − 4, (2.72)

while in the second case we getbc = −1 so that

x = −1

x + d
, (2.73)

thus producing

x1,2 = −d
2

± 1

2

√
d2 − 4. (2.74)

In both cases the problem is reduced to finding the Pythagorean numbers, i.e. to finding all
integer solutions of equation

a2 + b2 = c2. (2.75)

As known results indicate [50], the only solution ford in Eq. (2.74) isd = 2 (accordingly,
a = 2 in Eq. (2.72)) thus leaving us with just one fixed point. Clearly, we can identify
thus obtained fixed points with 0,1,−1 and±∞ as depicted in Fig. 3 since all other
points can be obtained by successive applications of modular transformations. Hence, the
semicircles depicted in Fig. 4 are not true geodesics contrary to the statements made in
[46]. Consideration of the general case (Section 3) produces the same negative result:
only one trivial solution of Eq. (2.75), thus leading to just one (parabolic) fixed point for
PSL(2,Z).

Although we had provided enough evidence which connects the geodesic laminations
and the train tracks, more systematic treatment of this subject would lead us somewhat
away from the topics which we had discussed so far. Fortunately, Sections 1.5–1.7 of
Chapter 1 of the book by Penner and Harer [51] contain all the required proofs (please, read
especially pp. 87–101). Much shorter proofs could be also found in the unpublished Ph.D.
Thesis by Lok [52]. Since these results are needed only for rigorous mathematical proofs
of connections between laminations and train tracks, we hope that our readers will consult
these references for better understanding of the obtained results and those which follow in
the rest of this paper.
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3. From geodesic laminations to 3-manifolds which fiber over the circle

3.1. The Alexander polynomial and surface homeomorphisms

The Alexander polynomial∆8(t) for the figure eight knot is known to be [53]

∆8(t) = t2 − 3t + 1. (3.1)

Consider, quite formally (for the time being only!), the zeroes of this polynomial. These
are obtained as roots of the equation

t2 − 3t + 1 = 0. (3.2)

A simple calculation produces

t1,2 = 1
2(3 ±

√
5). (3.3)

We would like now to compare Eqs. (3.2) and (3.3) with Eqs. (2.61) and (2.62), respectively.
Since this comparison yields complete coincidence of results, the rest of this section is
devoted to the proof that the above coincidence is not accidental. As a result of such proof, the
connection between the dynamics of 2+1 gravity and 3-manifolds is naturally established.
Unlike Witten’s [54] treatment of 2+ 1 gravity which establish this connection through
reformulation of this problem in terms of the Chern–Simons field theory, our treatment does
not require field-theoretic arguments at all and is based mainly on Thurston’s [18] theory of
3-manifolds. The condensed summary of relevant results of Thurston [18] and McMullen
[55] is given in our earlier publications, [15,16].

We would like to begin with reviewing some facts about the Alexander polynomial.
Although our earlier published review [56] provides sufficient physical background on
knot polynomials and, in particular, on the Alexander polynomial, this background is not
sufficient for our current purposes. Hence, we shall avoid references to physics literature
when we shall talk about the Alexander polynomial. To simplify matters, we shall treat only
the case of the Alexander polynomials for knots. The case of links is considerably more
complicated and will be treated in a separate publication. For the case of knots, letV be the
Seifert matrix of linking coefficients [17,57], then the Alexander polynomial∆K(t) for a
knotK is given by

∆K(t) = det(V T − tV) (3.4)

whereV T is the matrix transpose ofV . Such defined polynomial has some additional
remarkable properties [17,57]. For instance,

∆K(1) = ±1, (3.5)

∆K(t)
.=∆K(t−1), (3.6)

where the symbol
.= denotes an equality up to a constant multiplier (e.g. see Eq. (3.1) for an

obvious example). The above properties of∆K allow us to write it as polynomial of even
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degree 2r with integer coefficientsai :

∆K(t) =
2r∑
i=0

ait
i , a2r−i = ai. (3.7)

Using the inversion symmetry property reflected in Eq. (3.6) the following Laurent expan-
sion for∆K can be written:

∆K(t)
.=ar + ar+1(t + t−1)+ · · · + a2r (t

r + t−r ). (3.8)

We are not interested in all possible knots and their Alexander polynomials since not all
knots are of relevance to surface dynamics. As we had discussed earlier [16], only fibered
knots are of relevance. The easiest way to talk about fibered knots embedded inS3 is trough
consideration of their complementsS3 \K in S3. These are just 3-manifolds fibering over
the circleS1. Indeed, letS be the Seifert surface associated with knotK. Incidentally, the
punctured torus is the Seifert surface for both the figure eight and the trefoil (right and left)
knots [17,57]. There is another knot, the bridge knot b(7,3), which also has the same Seifert
surface but it cannot be fibered over the circle [58]. The Alexander polynomial∆T for the
trefoil is known to be [53]

∆T(t) = t2 − t + 1. (3.9)

The zeros of this polynomial are readily obtained

t1,2 = 1
2(1 ± i

√
3). (3.10)

Apparently, they have nothing to do with the discussion made in the previous section. This,
however, is not true as we shall soon demonstrate. To this purpose consider an orientation
preserving surface homeomorphismh : S → S. In the case of the punctured (holed) torus,
the homeomorphism should respect the presence of a hole. The circumference of this hole
is just our base spaceS1 (which, as it is not too difficult to guess, is just our knotK since the
knot is just a circle embedded intoS3). The Seifert surface itself is a fiber and the 3-manifold
is just a fiber bundle constructed in a following way. Begin with productsS × 0 (the initial
state) andSh × 1 (the final state) so that for each pointx ∈ S we have(x,0) and(h(x),1),
respectively. The intervalI = (0,1) can now be closed (to form a circleS1) by identifying
0 with 1 which causes identification:

(x,0) = (h(x),1). (3.11)

The fiber bundle (also known in the literature asmapping torus[55,59])

Th = (S × I )

h
(3.12)

is the 3-manifold which fibers over the circle and is complementary to the fibered knot inS3.
The interval(0,1)can be associated with some local time. The cyclic character of the process
leading to formation of 3-manifold(s) is not essential as it will be demonstrated below.
Therefore, actually, the time interval can be taken from−∞ to∞. The periodicity naturally



102 A.L. Kholodenko / Journal of Geometry and Physics 38 (2001) 81–139

occurs, if homeomorphisms are associated with motion along the Markov geodesics in
the Teichmüller space, e.g. see Eq. (2.60). Indeed, the homeomorphisms of surfaces are
associated with dynamics of train tracks. If we start with train track dynamics, it is in
one-to-one correspondence with dynamics of geodesic laminations and this dynamics, in
turn, is associated with motions in Teichmüller space, e.g. along some geodesics in this
space. Hence, the periodicity occurs quite naturally. McMüllen [55] and Othal [60] had
proved that the situation just described for the punctured torus persist for Riemann surface
(with marking and/or boundaries) of any genusg as it was briefly mentioned earlier in our
work, [16]. More specifically, they proved the following theorem.

Theorem 3.1. Letψ : S → S be a pseudo-Anosov homeomorphism of compact surface
with negative Euler characteristic. Then, in order for the mapping torusTψ to have a
hyperbolic structure one is looking for the related hyperbolic manifoldMψ = S × R

on which the homotopy class ofψ is represented by an isometryα. Then,Mψ/〈α〉 is
homeomorphic toTψ .

It can be demonstrated, e.g. Proposition 5.10 and the comments which follow in [17],
that classification of all fibered knot complements can be formulated in terms of fibering
surfaces and maps of such surfaces. Therefore, naturally, this fact is reflected in the as-
sociated Alexander polynomials. Unfortunately, the conjecture that all fibered knots are
classified one-to-one by their Alexander polynomials happens to be wrong. Morton [61]
had demonstrated that for the Seifert surfaces of genusg > 1 there are infinitely many
different fibered knots for each Alexander polynomial of degree> 2. This fact by no means
diminishes the role of the Alexander polynomial in dynamics of 2+ 1 gravity, it just makes
knot interpretations [21,54] of gravity less convincing. Similar negative conclusions had
been reached recently with help of absolutely different set of arguments in [62].

From the knot theory [17] it is known, that instead of expansion, Eq. (3.7), for the
Alexander polynomial for any knot, in the case of fibered knots one has to use

∆K(t) =
2g∑
i=0

ait
i , (3.13)

whereg is the genus of the associated Seifert surface. Moreover,

∆K(0) = a0 = a2g = ±1, (3.14)

i.e. the Alexander polynomial is monic. Using Eq. (3.4), we obtain at once

∆K(0) = det(V T) = det(V ) = ±1 (3.15)

to be compared with determinant in Eq. (2.31). Using Eqs. (3.15) and (3.4), we obtain
without delay

∆K(t) = det(V −1V T − tE) ≡ det(M − tE), (3.16)

whereE is the unit matrix andM is the monodromy matrix responsible for surface automor-
phisms [17,57]. This fact easily follows from the observation that∆K(0) = det(M) = ±1.
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Remark 3.2. Equating the Alexander polynomial to zero and finding the roots of this
polynomial is equivalent to solving the eigenvalue problem for surface automorphisms
which produces the stretching factors allowing one to distinguish between the hyperbolic,
pseudo-Anosov-type (when the largest root is real and greater than one), and the periodic,
Seifert-fibered-type (when the modulus of the largest root is equal to one), regimes of surface
homeomorphisms.

Let us discuss Eq. (3.16) a bit more. It can be easily shown [63] that, ifM ∈ GL(2, Z),
then

∆K(t) = t2 − (trM)t + detM. (3.17)

But, as we know already, detM = ±1. Hence, in this case we obtain, instead of Eq. (3.17),

∆K(1) = t2 − (trM)t ± 1. (3.18)

Using Eq. (3.5), we obtain as well

∆K(1) = 1 − (trM)± 1 = ±1. (3.19)

This leaves us with two options: tr(M) = 1 or 3. In the first case, we reobtain the Alexander
polynomial for the trefoil, Eq. (3.9), and in the second for the figure eight, Eq. (3.1), knots.
No other options are available! Hence we had just proved (in a somewhat different way
as compared with [17]) that the trefoil and the figure eight knots are the only two fibered
knots associated with the Seifert surfaces of genus 1. Moreover, the conditions trM = 3
and detM = 1 lead us directly to the Markov matrixa, Eq. (2.19). This matrix, Eq. (2.60),
and Theorems 5.10 and 5.11 of [17] provide direct connection between the hyperbolic
3-manifold associated with complement of figure eight knot and the pseudo-Anosov sur-
face homeomorphisms associated witha. These conclusions are in accord with results of
Thurston [18, Section 4.37], where they had been obtained in a different way.

At the same time, the conditions trM = 1 and detM = 1 are also very interesting since
they are associated with the matrix

M =
(

1 1
−1 0

)
or

(
1 −1
1 0

)
, (3.20)

whose eigenvalues we had calculated already in Eq. (3.10). It is easy to check that such
surface homeomorphism is not associated with motion along the hyperbolic geodesic since
the fixed point equation

x = 1 − 1

x
, (3.21)

which is equivalent to Eq. (3.9) (if we require∆T(t) to be zero) does not have real roots.
Using the same methods as in Section 2, we easily obtain that projectively the matrixM

is equivalent to the combination ofLR−1. Such transformations do not fit Theorem 5.11
and the associated 3-manifolds are known as Seifert-fibered spaces. Since the trefoil knot



104 A.L. Kholodenko / Journal of Geometry and Physics 38 (2001) 81–139

is the simplest representative of torus knots, it can be demonstrated [17], that the comple-
ments of all torus knots inS3 are associated with the Seifert-fibered spaces. According to
Thurston’s classification of surface homeomorphisms those leading to the Seifert-fibered
spaces are known as periodic. The detailed structure of the periodic phase may be very
complicated [64–66] and, hence, potentially very interesting from the point of view of
physical applications. The discussion of all emerging possibilities, surely, requires sepa-
rate publications. The geometrical richness of the Seifert-fibered regime provides a likely
explanation of different states of order in the case of liquid crystals as we had briefly men-
tioned in Section 1 and in earlier works. For example, solid and hexatic phases might be
associated with the Seifert-like while liquid and/or gas phases may be associated with the
pseudo-Anosov-like. In this paper, we shall be concerned only with transition between the
pseudo-Anosov and the Seifert-like phases leaving the detailed analysis of possibilities
emerging in the Seifert-fibered (periodic) phase for future publications. In order for our
results to be consistent with the rest of the literature on phase transitions we need now to
introduce several new concepts.

3.2. Mahler measures and topological entropies

Following Ref. [67], let us consider a monic polynomial with integer coefficients

F(x) = xd + ad−1x
d−1 + · · · + a1x + a0, (3.22)

wherea0 = ±1. If αi are the roots of this polynomial, then, equivalently, we can rewrite it
as

F(x) =
d∏
i=1

(x − αi). (3.23)

The logarithmic Mahler measurem(F) can be defined now as

m(F) = lnM(F), (3.24)

whereM(F) is given by

M(F) =
d∏
i=1

max{1, |αi |}. (3.25)

The following theorem is attributed to Walters, [68, Section 8.4]:

Theorem 3.3. The topological entropy of the transformation M is equal to the logarithmic
Mahler measure of the characteristic polynomial of the matrix M.

To make a connection with statistical mechanics, we would like to notice that the fact
the polynomialF(x) is monic is not at all restrictive (we used it only in order to make
connection with the previous discussion). Let us recall at this point some facts from Lee
and Yang [6] theory of phase transitions. For instance, for a gas ofM atoms which can
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be packed into the volumev the grand canonical partition functionΞ is given in a usual
manner as

Ξ =
M∑
n=0

Qn

n!
zn. (3.26)

Hence, the grand partition function is just some polynomial in fugacityz. Surely, the poly-
nomial, Eq. (3.26), must have some zeros. These zeros can be only in the complex planeC
and they have to come in pairs of complex conjugates for Eq. (3.26) to be real for realz’s.
Hence, effectively, we can rewriteΞ as follows:

Ξ(z) = QM

M!

M/2∏
n=1

(z− z̄n)(z− zn). (3.27)

SinceΞ(z = 0) = 1, the above result can be conveniently rewritten as

Ξ(z) =
M∏
n=1

(
1 − z

zn

)(
1 − z

z̄n

)
. (3.28a)

For physical applications one is interested in finding of lnΞ , i.e.

F(z) = lnΞ =
M/2∑
n=1

ln(z2 − 2 cosθn + 1), (3.28b)

where use had been made of the fact that the complex zeros should lie on the unit circle
in the complex planeC (this is demonstrated below). Ifg(θ) is the density of these zeros,
one can replace the above summation in Eqs. (3.28a) and (3.28b) by the integration with
the result

F(z) =
∫ π

0
dθg(θ) ln |(z2 − 2 cosθ + 1)|, (3.29)

which is written with account of symmetry of the integrand. To make a connection between
this result and the logarithmic Mahler measure it is only sufficient to use.

Lemma 3.4(Mahler’s lemma [67]).For any nonzeroF ∈ C[x],

m(F) =
∫ 1

0
dθ ln |F(exp(2π iθ))|. (3.30)

Proof. This result follows at once if one can prove Jensen’s formula: for anyα ∈ C∫ 1

0
ln |exp(2π iθ)− α| = ln max{1, |α|}. (3.31)

The detailed proof of this result can be found in [67]. Using Eqs. (3.23)–(3.25), Lemma 3.4
is proved. �
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From here, the following theorem follows at once.

Theorem 3.5.m(F) = 0 if and only if |αi | = 1 for all i in Eq. (3.23),provided thatF(x)
is monic polynomial.

This result coincides with that of Lee and Yang, e.g. see [6, Theorem 3, Eq. (57), p. 418],
where it was obtained using different methods. Theorem 3.5. does not imply that for all
monic polynomialsm(F) = 0. This is definitely not the case for the Alexander polynomial,
Eq. (3.1), for the figure eight knot. Evidently, for such knot the topological entropy is given
by

m8 = ln 1
2(3 +

√
5), (3.32)

while for the trefoil knotmT, is indeed zero in view of Eq. (3.10). Hence, the logarithmic
Mahler measure can be used for the Alexander polynomial of any fibered knot to distinguish
between the pseudo-Anosov and the periodic regimes. We would now like to complicate
matters by considering.

3.3. The incompressible surfaces in the once punctured torus bundles overS1

Although the previous analysis is interesting in its own right, the situations which we had
considered so far (with the trefoil and the figure eight knots) are not the only possibilities
for the punctured torus automorphims. To go beyond these possibilities means to abandon
almost completely the connections with knots and to concentrate attention on solutions of
the equation

D(t) = det(M − tE) = 0. (3.33)

Since we now do not requireD(t) to be connected with knot polynomials, there is no need
forD(1) = ±1. At the same time, Eq. (3.33) is legitimate equation for finding of stretching
factors characteristic for pseudo-Anosov homeomorphisms. For an arbitrary matrixM ∈
SL(2,Z) we obtain, instead of Eq. (3.18), the equation (n ∈ Z)

t2 − nt ± 1 = 0, (3.34)

which produces the following roots:

t1,2 = 1
2(n±

√
n2 ∓ 4). (3.35)

From here, we see that onlyn which obey|n| ≤ 2 produce the stretching factors charac-
teristic for the periodic (Seifert-fibered) phase. For all|n| ≥ 3 the stretching factors are
characteristic of the pseudo-Anosov phase. These results can be interpreted topologically
with help of the notion of incompressible branched surfaces introduced by Oertel [69]. We
would like to discuss these surfaces in order to make connections with the results of Section
2 and in order to provide topological interpretation of the results of Section 4.
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Fig. 5. Branched surfaces associated with dynamics of train tracks.

Fig. 6. (a) Kirkhoff-type rules for branched surfaces. (b) Another interpretation of the weights on branches (read
the text for details).

The notion of branched surfaces is inseparably connected with the notion of train tracks.
As soon as we would like to visualize the dynamics of train tracks in time, we encounter
branched surfaces which are perpendicular to the original surface as it is depicted in Fig. 5.

Naturally, these branched surfaces inherit the weights, e.g. see Fig. 1, from the associated
with them train tracks and these weights obey the switch conditions as for the train tracks.
This is depicted in Fig. 6a. The weights are some positive integers which could be interpreted
as number of surfaces in the stack (Fig. 6b). These branched surfaces inherit from the train
tracks some topological restrictions as depicted in Fig. 7.

For instance, in the case of train tracks the monogons are forbidden as well as discs of
contact, etc. (for details, please, contact Ref. [52]). Floyd and Oertel [70] (see also [69,
p. 387]) had proved the following.

Theorem 3.6. There is a finite collection of incompressible branched surfaces in some
3-manifold M such that every two-sided incompressible, ∂-incompressible surface in M is
carried with positive weights by a branched surfaceB of the collection.

The surfaceS is called two-sidedin M if there is a regular neighborhood ofS home-
omorphic toS × I whereI = [0,1] [71]. If S 6= S2, RP2, or a discD2 which can be
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Fig. 7. Topological restrictions which branched surfaces inherit from train tracks.

pushed to∂M, thenS is incompressibleif every loop (a simple closed curve) onS which
bounds an (open) disc inM \ S also bounds a disc inS. If S has boundary, thenS is also
∂-incompressible if every arcα in S (with ∂(α) ∈ ∂S) which is homotopic to∂M is also
homotopic inS to ∂S [18, Section 4.10].

Fig. 6b shows the local model for the fibered regular neighborhoodN (B) ofB, it also
depicts thehorizontalboundary∂hN(B) and theverticalboundary∂vN(B).

The branched surfaceB is incompressible if

1. B has no discs of contact;
2. ∂hN(B) is incompressible and∂-incompressible inM \ ◦

N where
◦
N is just an interior

of N(B) and∂-compressing disc for∂hN(B) is assumed to have boundary in∂M ∪
∂hN(B);

3. there are no monogons inM \ ◦
N.

Being armed with such definitions, we would like to show how actually these surfaces
can be built. This task was actually accomplished in [72,73]. Alternative treatment can be
found in recently published paper by Minsky [46]. It is essential to contact these references
for detailed study of this very involved topic. The theory of incompressible surfaces in
connection with general theory of 3-manifolds can be found in the review by Jaco [74].
Here, we restrict ourselves only with very basic facts which are needed for topological
interpretation of the results which follow in Section 4.

The mapping torus construction, Eq. (3.12), does produce 3-manifolds which are the
complements of Fig. 8 and trefoil knots, respectively. It is clear, based on Eq. (3.19), that
nothing much beyond this can be obtained. To get more, one needs to generalize this con-
struction. Following [72], we would like to consider more involved way of constructing
torus bundles. For example, letS be some surface and letX1, X2 be the topological spaces
associated with the mappingγi : S × [0,1] → Xi , i = 1,2. For some surface homeo-
morphismh : S → S defineX1/hX2 to be the quotient space obtained fromX1 ∪ X2

by identifyingγ1(x,1) with γ2(h(x),0). In this picture the mapping torusTh, Eq. (3.12),
is just a quotient space obtained fromX1 by identification ofγ1(x,1) with γ1(h(x),0).
Now, however, we can extend this construction by lettingi to range from 1 ton. Thus, if
γi : S × [0,1] → Xi andhi : S → S are homeomorphisms fori = 1, . . . , n, then the fiber



A.L. Kholodenko / Journal of Geometry and Physics 38 (2001) 81–139 109

Fig. 8. Bi-infinite strip
∑
ϕ of edge-paths associated with hyperbolic transformationϕ.

bundle

X = X1/h1X2/h2 · · · /hn−1Xn/hn (3.36)

is associated with some 3-manifold which, actually, can be obtained from the figure eight
3-manifold by means of hyperbolic Dehn surgery [18,75]. Before explaining its meaning,
several simpler concepts need to be elucidated. First, since according to Section 2, all toral
homeomorphisms can be performed with help of the rightR and the leftL Dehn twists
(for orientation preserving homeomorphisms), the fiber bundle construction just described
is equivalent to some transformationϕ of the punctured torus given by

ϕ = Ra1La2 · · ·La2n , ai ≥ 1, (3.37)

in accord with [72]. Since each torus is completely determined by the ratioτ of its sides,
e.g.τi = ai/bi , it is clear, in view of Eq. (3.36) that the transformationϕ should be such
thatϕ(ai/bi) = ai+2n/bi+2n for all i and fixedn. This prompts us to discuss the properties
of the partition functionZ = tr ϕ which we postpone till Section 4. In this section, we
would like to discuss a bit more the topological issues. According to the results of Section
2, the transformationϕ is of the same kind as the transformationW in Eq. (2.50). This
means that the cumulative result of matrix multiplications in Eq. (3.37) is just some matrix
M of the type given by Eq. (2.31). In Section 2, we had already discussed special cases of
equations for geodesics. Here, we would like to investigate the most general case. Using
Eq. (2.67), we obtain the following roots which provide locations of the beginning and the
end of hyperbolic geodesics onS1∞:

x1,2 = 1

2c
(a − d ±

√
(a + d)2 − 4). (3.38)

Sincea + d is just the trace ofM we have to impose the usual requirement that tr2M ≥ 4
for the transformation to be hyperbolic. In addition, however, we have to take into account
that tr2M is some nonnegative integer. As we had argued in Section 2, the rootsx1,2 cannot
be rational numbers. Hence, whatever they might be, they will belong to some quadratic
irrationalities. From the number theory [44] it is well known that the continued fraction
expansions of quadratic irrationalities are periodic as it had been mentioned already after
Eq. (2.58) and this fact also explains the periodicity ofϕ transformation.



110 A.L. Kholodenko / Journal of Geometry and Physics 38 (2001) 81–139

Remark 3.7. Since, according to Section 2, the exponentsa1, . . . , a2n in Eq. (3.37) are
in one-to-one correspondence with the coefficients of continued fraction expansion, this
periodicity is in one-to-one correspondence with the fiber bundles constructed in Eq. (3.36).

That this is indeed the case is shown in great detail in [72,73]. Moreover, since the
transformationϕ is hyperbolic, it acts by translations along the geodesics inD whose ends
are determined by the roots of Eq. (3.38). This has been illustrated already in Eqs. (2.60)
and (2.66). Imagine now that we move along one of such geodesics, sayG, that is we
move in the Teichmüller space of the punctured torus. Such motion will be associated
with the sequence of crossings of triangles of the Farey tesselation. To understand why
this is so the following arguments are helpful. Each torus can be triangulated, i.e. it can
be represented as at least two triangles. Obviously, one of this triangles is sufficient for
complete characterization of the torus. The triangle is determined by the slopes of its sides.
For example, the undistorted triangle is determined by the triple∆(T ) = 〈1

0,
0
1,

1
1〉. It is

sufficient to take a look at Figs. 3 and 4 in order to recognize one-to-one correspondence
between this triple and the Farey numbersF1 for the largest triangle in the Farey tesselation.
Hence, motion in the Teichmüller space of the punctured torus is indeed associated with
sequence of triangles in the Farey tesselation ofD sinceM(∆(T )) = ∆(M(T ))whereM(z)
is defined by Eq. (2.37). Topologically, we can visualize this chain of triangles as an infinite
strip

∑
ϕ , e.g. see Fig. 8, which consists of triangles crossed byG. The numbersai > 1

indicate the number of smaller triangles within each larger triangle. They are in one-to-one
correspondence with the exponents in Eq. (3.37). The periodicity of the transformationϕ

is reflected in the periodicity of the triangulation pattern in the strip
∑
ϕ . To make all these

statements more physical, we need to discuss the meaning of hyperbolic Dehn surgery
(actually, Dehn filling!) now.

Let M be a hyperbolic 3-manifold whose boundary∂M is a torusT . If we write T =
R2/Z2 and choose for basis vectorse1,e2 of the latticeZ2 then, for any coprime pair of
integers(p, q) the elementpe1+qe2 determines some simple curve onT . Consider another
solid torusS1 ×D2. This torus we glue intoM in such a way that the curvepe1 + qe2 in
∂M is being glued to the meridian (that is to the curve of slope1

0) of the solid torus.

Remark 3.8. It is being said that this new 3-manifoldM(p, q) is obtained from the oldM
by the operation of Dehn filling along the curve of slopep/q.

Hatcher has proved the following remarkable theorem (using branched surfaces) [76].

Theorem 3.9. A 3-manifold with a single torus boundary component has only finitely many
boundary slopes.

Remark 3.10. (a) From the previous discussion it follows that there should be a corre-
spondence between the incompressible surfaces and the boundary slopes. (b) The boundary
slopes are also in correspondence withQ ∪ {∞} and, hence, with the Farey tesselation
of D.
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This correspondence can be rephrased in physically familiar terms as we would like to
demonstrate now. To this purpose, let us recall that the continued fraction expansion forα

which is quadratic irrational can be written as

α = [a0, . . . , ar , ar+1, . . . , ar+2n, ar+1, . . . , ar+2n, . . .]. (3.39)

The quadratic irrational is purely periodic [77] if we haveam+2n = am for allm (i.e. in this
case, the termsa0, . . . , ar are absent). Evidently, Fig. 8 represents just this case. Let us now
associate the boundary slopep/q with continued fraction

p

q
= [a1, . . . , a2n], (3.40)

(e.g. see the discussion after Eq. (3.37)) and consider directed random walks from the point
1
0 to the pointp/q on the diagram (Fig. 8). The random walkγ is directed if it does not
have backtracks, moreover, the walk is minimal if two successive steps never belong to
the same triangle. A brief introduction to the properties of such walks can be found in our
earlier work [78], where such walk was used for description of the discretized version of
the Dirac propagator. Such discretization is useful in some problems relevant to physics of
semiflexible polymers.

Following our earlier work [78], letN = n be the total number of steps in the directed
(edge-paths) walkγ and letN+ be the number of right turns whileN− be the number of
left turns in such a walk. Associate a system ofN Ising spinsσi with the walk so that
σi = +1(−1)will correspond to the turn to the left (right). With such defined rule for spins,
the “magnetization”M is given by

M =
N∑
i=1

σi. (3.41)

In the case if eigenvalues of the matrixϕ, Eq. (3.37), are positive the boundary slopem(n)
is given by [73,79]

m(n) = 1
4M . (3.42)

If the matrixϕ has negative eigenvalues then, instead of Eq. (3.42), one hasm(n) = 1
4M +

1
2. In the following section, thus introduced quantities acquire new statistical mechanical
meaning. Floyd and Hatcher [73] have proved the following theorem.

Theorem 3.11. If ϕ (Eq.(3.37))is hyperbolic, then a connected, orientable, incompressible,
∂-incompressible surface inMϕ is exactly one of:

1. the peripheral torus∂Mϕ ,
2. the fiberT 2 − {0},
3. a finite number(≥ 2) of non-closed surfacesSγ indexed by minimal edge-pathsγ .

From here, it follows, in particular, that for transformation given by the matrixa,
Eq. (2.21), which is relevant to 3-manifold associated with the complement of figure eight
knot, there are exactly two non-closed orientable incompressible∂-incompressible surfaces.
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According to Thurston [18, Section 4.40], these are justT 2\2 discs surfaces which are oppo-
sitely oriented. The above Theorem 3.11 does not include the nonorientable incompressible
surfaces. This case was studied by Przytycki [79,80] whose work extends the work by Floyd
and Hatcher and is based on the same edge-path methods. For the complement of figure
eight knot 3-manifold the incompressible unoriented surface is just the Klein bottle-disc as
it was also shown by Thurston in the same Section 4.40. We refer our readers to the original
papers for more details. In the meantime, we would like now to provide some physical
interpretation of the obtained results using some recent results from statistical mechanics
of number-theoretic spin chains.

4. Thermodynamics of the Farey spin chains and statistical mechanics of2 + 12 + 12 + 1
gravity

In our previous work [15], we have used meanders and Peierls-type arguments for de-
scription of phase transitions in liquid crystals and gravity. Such type of approach, although
provides some estimate of transition parameters, is not well suited for more refined analysis
since even the notion of the order parameter, central to all theories of phase transitions, is not
so easy to implement within such an approach. In the previous section, we had introduced
the logarithmic Mahler measure, Eq. (3.24), which is ideally suitable for description of
dynamical phase transitions and in, addition, perfectly fits Yang and Lee [6] theory of phase
transitions. To make use of this measure, we need to provide an equivalent definition of
this measure now (incidentally, this alternative definition provides an extra link between the
statistical mechanics and the number theory [67]). To this purpose, instead of Eq. (3.23),
introduce

∆n(F ) =
d∏
i=1

(αni − 1). (4.1)

Using this defined polynomial∆n it can be shown that, provided no zero ofF(x), Eq. (3.22),
is a root of unity,

m(F) = lim
n→∞

1

n
ln |∆n(F )|. (4.2)

In the case if polynomialF(x) has zeros which are roots of unity,m(F) = 0. Being armed
with such results, following Refs. [81,82], let us introduce the spin-like variableσi = {0,1},
i = 1− k, which is related to the Ising spin si = (−1)σi . Define now inductively the matrix
Dk via the following set of rules:

D0 =
(

1 0
0 1

)
, (4.3)

Dk = L1−σkRσkDk−1(σ1, . . . , σk−1). (4.4)

The energyEk can be defined now as

Ek = ln Tk (4.5)
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with Tk = Tr(Dk). This allows us to introduce the partition function

Zk(β) =
∑
{σi }

exp(−βEk). (4.6)

with control parameterβ playing a role of the inverse temperature. Then, the free energy
F(β) can be defined in the usual way as

F(β) = lim
k→∞

Fk, (4.7)

where

Fk = −1

kβ
ln(Zk(β)). (4.8)

To make connection with Eq. (4.2), we notice that

m(F) = lim
k→∞

1

k
Ek. (4.9)

SinceEk is random variable, more appropriate quantity is the average Mahler logarithmic
measure which can be interpreted as an average energyU(β), i.e. we have

U(β) = lim
k→∞

Uk(β) withUk(β) = ∂

∂β
(βFk(β)). (4.10)

The average magnetization (per site) associated with the average boundary slope, e.g. see
Eqs. (3.41) and (3.42), can be defined accordingly as

Mk(β) =
〈

1

k

k∑
i=1

si

〉
k

, (4.11)

where, as usual, for any observableO, the average〈· · · 〉k is defined by

〈O〉k(β) =
∑

{σ }O(σ)exp(−βEk)∑
{σ } exp(−βEk) . (4.12)

Detailed calculations performed in [7–9,81,82] allow us to avoid repetitions. Hence, we
only provide here the summary of results. In the thermodynamic limit, k→ ∞, the partition
function, Eq. (4.6), acquires the following form:

Ẑ(β) = lim
k→∞

Zk(β) = ζ(β − 1)

ζ(β)
(4.13)

announced earlier in Section 1, e.g. see Eq. (1.4).

Remark 4.1. The partition functionẐ(β) can be brought into form which coincides with
that for lattice gases, e.g. see Eqs. (3.27), (3.28a) and (3.28b). To this purpose let us introduce
the notationξ(β) = Γ (1

2β)(β − 1)π−(β/2)ζ(β) whereΓ (x) is just the Euler’s gamma
function. Then, following Riemann [2], we notice that

ξ(β) = ξ(0)
∏
ρ

(
1 − β

ρ

)
,
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whereρ ranges over the roots of the equationξ(ρ) = 0. Hence, the complete statistical
mechanics treatment of 2+ 1 gravity depends crucially on our knowledge of distribution
of zeros of Riemann zeta functionζ(ρ) and, hence, on constructive solution of Riemann
hypothesis.

Remark 4.2. Taking into account that the Riemann’s zeta function has the following inte-
gral presentation [1,2]

ζ(β) = 1

Γ (β)

∫ ∞

0
dx

xβ−1

ex − 1
,

one can interpret the obtained results in terms of the thermodynamic properties of some
fictitious Bose gas so that the phase transition in such gas to some extent resembles Bose
condensation. This topic is discussed further in the Appendix A.

Since solution of the Riemann hypothesis is not yet found (see, however, [5]), we may be
content for now by finding some meaningful estimates. For instance, Eq. (4.13) allows one
to obtain the critical “temperature”βcr = 2 [8]. In the high temperature (pseudo-Anosov)
phase, i.e. for 0< β < βcr, the averaged logarithmic Mahler measureU(β) is bounded by
the following inequalities [8]:

ln 2 − β ln 3
2

2 − β
≤ U(β) ≤ ln

3

2
. (4.14)

Since for 1.7 < β < 2 the l.h.s. of this inequality is negative, more accurate estimate was
obtained for 1≤ β < 2:

U(β) ≥ 1
4(βcr − β). (4.15)

With such improved estimate Contucci and Knauf [8] had demonstrated thatU(β) ≥ 0
for 0 ≤ β < 2. Thus, the high temperature phase is indeed of pseudo-Anosov type. For
β ≥ βcr, i.e. in the low temperature (periodic or hexatic [19]) frozen phase,U(β) = 0,
which is physically meaningful. In this phase alsoF(β) = 0. At the same time, the average
magnetization

M(β) = lim
k→∞

Mk (4.16)

is equal to one in the low temperature phase and is zero in the high temperature phase. This
also makes physical sense since, according to the results of Przytycki [80, Proposition 3.2],
newM(p, q)manifolds obtained by Dehn filling from 3-manifoldM which is complement
of the figure eight knot are Seifert-fibered only ifp/q = ±1

1,±1
2, or ±1

3. In order to
connect this result with physics it is important to realize that the “magnetization” defined
in Eq. (3.41) is made of spins which are periodically arranged in the bi-infinite strip

∑
ϕ .

The thermodynamic averages are appropriate only if the periodn → ∞. In the case of
finite n somen-dependent corrections are usually expected [19] for all observables. These
corrections naturally should vanish in the thermodynamic limitn → ∞. Hence, identifi-
cation of the average magnetization with the average slope cannot be done automatically.
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Fig. 9. Graph
∑

dual to the Farey tesselation ofD.

This casts some doubts on the appropriateness of the above thermodynamic formalism for
description of statistical mechanics of 2+ 1 gravity. Fortunately, there are other ways to
arrive at the same conclusions which we are now going to discuss in this and the following
section.

First, instead of considering the Farey triangulation ofD, we can consider the asso-
ciated with it dual tree as depicted in Fig. 9. Following Bowditch [34], we notice that,
actually, topologically such tree is in one-to-one correspondence with the Markov tree de-
picted in Fig. 2. This observation can be used for description of random walks on such
trees. This walk can be associated naturally with motions in the Teichmüller space of
the punctured torus as has been observed already by Penner [83]. Let

∑
denote the dual

graph depicted in Fig. 9 and letV (
∑
), E(

∑
) andΩ denote, respectively, the sets of

vertices, edges and the regions complementary to
∑

. Each vertex lies at the boundary
of three complementary regionsX, Y,Z ∈ Ω while each edge meets four complemen-
tary regionsX, Y,Z,W . The subsetΩ̂ of nontrivial nonperipheral closed curves onT
introduced in Section 2 can now be identified withΩ becauseX, Y,Z,W ∈ Ω corre-
spond, respectively, to the equivalence classes of generatorsa, b,ab andab−1 of the free
groupG as discussed in Section 2. Looking at the Fig. 9, it is easy to recognize that
the regions ofΩ are in one-to-one correspondence with rationalsQ ∪ {∞} of the Farey
tesselation. Moreover, in the light of definitions just made, we can further identify the
Markov triples,x, y andz with the regionsX, Y,Z andW as follows:x = φ(X), etc.,
whereφ(X) = tr a, etc. Using Eqs. (2.7) and (2.8), one can easily obtain the following
result:

z,w = h(x, y) = xy

2

(
1 ±

√
1 − 4

(
1

x2
+ 1

y2

))
. (4.17)
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This results prompts us to rewrite Eqs. (2.7) and (2.8) in the form

x

yz
+ y

xz
+ z

xy
= 1, (4.18)

z

xy
+ w

xy
= 1. (4.19)

Written in such form, these equations acquire new geometrical meaning. Given a directed
edgeEe ∈ E(∑), defineψ(Ee) = z/xyso that for each edgee we have, instead of Eq. (4.19),

ψ(Ee)+ ψ(−Ee) = 1 (4.20a)

(edge relation), while instead of Eq. (4.18), we have

ψ(Ee1)+ ψ(Ee2)+ ψ(Ee3) = 1 (4.20b)

(vertex relation). It could be rather easily shown thath(x, y) ≥ h(x)+h(y). Given this fact,
we observe that when 2≤ |x| ≤ ∞,h(x) is real. Accordingly, we expect that|x|, |y|, |z| ≥ 2.
Consider now some vertexv∗ ∈ V (∑) and consider the setTn(v∗) which is a tree spanned
by all vertices which are at the distance at mostn from the “seed”. LetΩn(v∗) be the set of
all complementary regions meetingTn(v∗), while Cn(v∗) be the corresponding subset of
edges. Then, it can be shown [84] that

∑
X∈Ωn(v∗)

h(φ(X)) ≤ 1

2

∑
Ee∈Cn(v∗)

ψ(Ee) = 1

2
. (4.21)

Actually, the inequality above can be replaced with equality and the above equality is known
as McShane identity [85]. Since, in spite of its importance, we are not going to use it, we
are not going to discuss its significance. The above result is mentioned only because it is of
interest to inquire what happens with the convergence of some other functionsf (X). Let,
for instance,f : Ω → [0,∞) has a lower Fibonacci bound (to be defined shortly below),
then, according to Bowdich [34], the series

F(f ) =
∑
X∈Ω

[f (X)]−s (4.22)

converges for alls > 2. A lower Fibonacci bound for functionf (X) onΩn ∈ Ω exist if
there is some constantk > 0 such thatf (X) ≥ kFe(X) for all but finitely manyX ∈ Ωn.
The functionFe(X) can be chosen as the lengthL of the reduced word Wr [34], see, e.g.
Eq. (2.5). Evidently,L = n in view of the results just presented. If this is so, the question
arises: hown depends onX? Stated alternatively: is there way to convert the summation
overX (that is overΩn) into summation overn? Fortunately, the last problem can be easily
solved. SinceX, Y,Z andW are in one-to-one correspondence with the Farey numbers
all these numbers are coprime to each other [34]. Surely, that they are also coprime ton.
This means that the lengthL can take any valuen at precisely 2φ(n) regions ofΩn where
φ(n) has been defined by Eq. (1.5) as number of numbers less thann which are prime
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to n. The factor of 2 is easy to understand if one putsn = 1. Hence, Eq. (4.22) can be
rewritten as

F(f ) = 2
∞∑
n=1

φ(n)n−s = 2
ζ(s − 1)

ζ(s)
. (4.23)

This result coincides with earlier obtained, Eq. (4.13), thus providing an independent support
to earlier developed thermodynamic formalism.

5. Further developments

5.1. The circle packing and the Farey numbers

Rademacher [47] had found alternative geometric representation of the Farey numbers
which is worth discussing now since it has physical significance which ultimately goes far
beyond the leaky torus model. To facilitate our reader’s understanding, we would like to
remind at this point few relevant facts from the theory of Möbius transformations. To begin,
using Eq. (2.38) we notice that the point∞ is the fixed point of the Möbius (in our case,
modular) transformation as long asc = 0. If this is the case and, taking into account that
ad = 1,we obtain a transformation of the type

z′ = a2z+ ab, (5.1)

which will have another fixed pointz∗ = ab/(1 − a2) 6= ∞ as long asa 6= 1. This
cannot happen, however, as we had discussed in connection with Eq. (2.69). Therefore,
the only possibility which is left to us isa = 1 and, hence, we are left with the parabolic
transformation

z′ = z+ b. (5.2)

This transformation fixes infinity and makes all integers equivalent (e.g. discussion after
Eq. (2.58)). It is directly associated with the presence of a puncture (cusp) in the case of
torus as can be easily proven [86]. InH 2 model, realization of hyperbolic space consider the
geodesic (or the set of geodesics) which pass through the point at infinity. Surely, these are
just semi-infinite rays which are perpendicular to the real axis. Accordingly, the associated
horocycles are just the set of lines parallel to the real axis. Consider, in particular, the
horocycle located at the vertical distance 1 from the real axis. The parabolic transformation,
Eq. (5.2), is not going to change the location of such horocycle. But, in general, it is known,
that the Möbius transformations transform lines into lines and circles into circles. Hence,
for the above horocycle (actually a circle located at infinity) there must be a modular
transformation which transforms a circle at infinity to a circle located at some point on the
real axis. In particular, [86], the transformationz 7→ −1/zmaps the horizontal horocycle at
unit height to the horocycle resting at the origin and having diameter 1. This example can be
easily generalized. To this purpose, it is convenient to rewrite the modular transformation,
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Fig. 10. Circle packing associated with the Farey numbers.

Eq. (2.37), as follows:

z′ − a

c
= − 1

c2(z+ d/c)
. (5.3)

Let nowZ′ = z′ − a/c andZ = c2(z + d/c) then, we obtain back the transformation
Z′ = −1/Z. Let, nowz∗ = Z/c2. By this transformation, a circle of radius12 becomes a
circle of radius 1/2c2 touching the real axis at zero. Sincec can be only an integer number it
is clear that all radii are less or equal to1

2. Finally, by using the transformationz = z∗−d/c,
we shift the point of tangency for such circle to the locationz = −d/c. Consider a very
special case first:c = 1. Then, our circle is going to touch the real axis at some integer
point −d of real axis. It is clear now that for differentd ’s we would have different circles
and that all these circles are going to touch each other. Moreover, and this is not difficult
to prove [47] forc different from 1 the corresponding circles are all going to touch each
other as it is depicted in Fig. 10. Clearly, Fig. 10 represents a very coarse picture since the
number of circles is countable infinity between every neighboring pair (unit interval) of
integers. Given this, one may think about the distribution of sizes of such circles. Following
Sullivan [87], we say that two real numbers have the sameρ-size if they belong to one of the
intervals (ρn+1, ρn). Then, we can group the circles into collections whose diameters have
the sameρ-size. The number of circles of a given sizes = (ρn+1, ρn)within a unit interval
is the number of pairs(p, q) with p ≤ q andp relatively prime toq (so thats ∼ 1/q2)
which is again the Eulerφ(q) totient function, Eq. (1.5). This fact can be easily understood
if we recognize that the horocycles which are located at positionsp/q within unit interval
are having sizes of order 1/q2.

Following Sullivan [87] (and also [88]), let us consider definitions of packing and covering
Hausdorff measures. Adopted to our case, we have to consider a (closed) subsetΛ of R2

and to cover this subset by discs of radiir1, r2, . . ., all less than someε ≥ 0. Consider now
the sum Sc = ∑

iψ(ri)whereψ(ri) = rδi with δ being some “critical exponent” (Hausdorff
dimension) of the setΛ. ThecoveringHausdorffψ-measure ofΛ is the limit (asε → 0)
of the infimumof Sc with the exponentδ being a fractal dimension ofΛ. Analogously, one
can define thepackingHausdorff measure. In this case one should consider an open setΛ′

and to cover it by the set of disjoint (that is nontouching) circles. Then, one has to consider
thesupremumfor the analogous sumSp. In general, the packing and the covering Hausdorff
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dimensions are not the same. Such technicalities are needed for description of limit sets of
Fuchsian (Möbius in general) groups with cusps (for a quick introduction to this subject,
please consult our earlier work, [24]). Depending upon the rank of the cusp one should use
eitherSc or Sp [89]. At this point it is just sufficient to take into account that in our case, in
view of the results just obtained,

∑
circles

(size)δ/2 =
∞∑
n=1

φ(n)n−δ = ζ(δ − 1)

ζ(δ)
. (5.4)

Hence, we have reobtained again the result, Eq. (4.13), which now acquires completely
new meaning. It should be apparent at this point, that one still can do much better if one
recalls all relevant facts about the Patterson–Sullivan measure of the limit setΛ which we
had discussed in our earlier work, [24], in connection with AdS/CFT correspondence.

5.2. The Eisenstein series and the S matrix

If ρ(x, y) is the hyperbolic distance between pointsx andy ∈ H 2 then, the Patterson–
Sullivan measure can be constructed with help of the Poincaré seriesgδ(x, y) defined as

gδ(x, y) =
∑
γ∈Γ

exp

(
− δ

2
ρ(x, γy)

)
(5.5)

for some Fuchsian (or Möbius, in general) groupΓ . The factorδ is responsible for con-
vergence/divergence ofgδ and its threshold value is associated with the fractal dimension
of the limit setΛ (which is closed (sub)set of the boundary at infinity, in our case,S1∞).
According to the theorem of Beardon and Maskit [24, Theorem 5.1], the limit setΛ of the
discrete groupΓ is made of parabolic limit points (i.e. those which are associated with
cusps) and conical limit points (i.e. those which are associated with the fixed points of
hyperbolic elements ofΓ ) and the conical limit points always lie outside of the cusps.

This means that motion along the hyperbolic geodesics (e.g. see Sections 2–4) is accom-
panied with countable infinity of events associated with such geodesic entering and leaving
the corresponding horocycle associated with the cusp as it is schematically depicted in
Fig. 11. This fact was noticed in the paper of Sullivan [87] who also had estimated the
characteristic time of this process (that is for the motion with unit speed along the geodesic
(world line) one can estimate how long such motion spends inside the cusp). For additional

Fig. 11. Entering and leaving the “black hole” (the cusp) while moving along the hyperbolic geodesic.
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illustration and more details, please, see Fig. 5 of our earlier work, [24], and the comments
associated with it. Let our geodesic begins at the pointz∗ and ends at the pointw∗ of real
axis. These points are chosen in such a way that it passes through the pointzwhich is the top
of horocycle located at the point−d/c of real axis and through the pointw of the horocycle
located at infinity. Hence, the pointw = i + x, the pointz = iy − d/c (andy = 1/c2). It is
always possible to find a transformationg(z) such thatg(z∗) = 0, g(w∗) = ∞, g(z) = iy
andg(w) = i [90]. In view of this, we obtain,

ρ(z,w) = ln

(
1

y

)
. (5.6)

Using this result in Eq. (5.5), we obtain

E(y, δ) =
∑
γ∈Γ

(γy)δ/2. (5.7)

This is just the Eisenstein series. Evidently, the subsetΓ must correspond to subset of
closed nonperipheral curves (i.e., it does not contain an accidental parabolic elements)
on the torus which belong tôΩ (defined after Eq. (2.5)). Fortunately, the properties of
the Eisenstein series, Eq. (5.7), are well known. This fact allows us not only to provide
different interpretation to our main result, Eq. (4.13), but allows, in principle, to gener-
alize the obtained results to the Riemann surfaces of higher genus. To understand why
this is so, we would like to reproduce some results from our previous work, [24], at this
time.

In the upper-half space model realization ofd + 1-dimensional hyperbolic spaceHd+1

the hyperbolic Laplacian∆h acts on some functionf (x, z) according to the following
prescription:

∆hf (x, z) = z2
[
∆f − (d − 1)

1

z

∂f

∂z

]
, z > 0, x ∈ Rd . (5.8)

In two dimensions, the second-term vanishes. We would like to keep it, nevertheless, since
the obtained results can be immediately generalized (see below). For anyd ≥ 1, the eigen-
value equation for the hyperbolic Laplacian reads

∆hz
δ/2 = δ

2

(
δ

2
− d

)
zδ/2. (5.9)

In the case of two dimensions, of course, we have to replacez by y. If

∆hf (x) ≡ F(x), (5.10)

andx = {x, z} then, for anyγ ∈ Γ whereΓ is the group of isometries which leaveHd+1

invariant, we obtain

∆hf (γ x) ≡ F(γ x). (5.11)

This means that not onlyzδ/2 is an eigenvalue of∆hbut (γ z)δ/2 as well. Of course, the
linear combination is also an eigenvalue of∆h. Thus, not only ford = 1 butfor any d ≥ 1
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we obtain,

∆hE(z, δ) = δ

2

(
δ

2
− d

)
E(z, δ). (5.12)

Surely, ford = 1 we relabelz asy. In this case, following [91] we obtain,

E(y, δ) = yδ/2 + ϕΓ (δ)y
1−δ/2 + O(e−2πy), (5.13)

which is sufficient for largey’s. Here the scatteringS matrixϕΓ (δ) [11] is given by

ϕΓ (δ) = √
π
Γ (1

2δ − 1
2)ζ(δ − 1)

Γ (1
2δ)ζ(δ)

. (5.14)

This result should be compared with Eqs. (4.13) and (5.4). In order to generalize these
results, we would like to mention several useful properties of theS matrixϕΓ (δ). First, it
can be shown [91,92] that

E(y, δ) = ϕΓ (δ)E(y,1 − δ). (5.15)

Using this result, we introduce new variableδ − 1
2 = ξ . Eq. (5.15), when written in terms

of this new variable, acquires the following more symmetric form:

E(y, ξ + 1
2) = ϕΓ (ξ + 1

2)E(y, ξ − 1
2). (5.16)

Let nowξ → −ξ in Eq. (5.16). By combining this obtained equation with Eq. (5.16), we
obtain very important relation (unitarity condition) [92]:

ϕΓ (ξ + 1
2)ϕΓ (ξ − 1

2) = 1. (5.17)

Being armed with this results we can now proceed with generalizations.

5.3. Hyperbolic Dehn surgery once again

In this work, we only provide an outline of the relevant results leaving more detailed
discussion for future publications. To begin, let us notice that so far we were able to obtain
all results of this paper only because the Teichmüller space of the punctured torus happen
to coincide with the hyperbolic upper plane Poincaré modelH 2, so that the motion in the
Teichmüller space coincides with the motion in the hyperbolic spaceH 2. This is not the
case for the Riemann surfaces of higher genus [40] and, hence, at first sight, the results of
this paper are not extendable to surfaces of higher genus. Very fortunately, this is not the
case as we would like now to argue. Let us recall that we have started our discussion with the
figure eight and the trefoil knots in Section 3. Then, we had considered the corresponding
3-manifolds created by the mapping torus construction and, after this, we had considered the
incompressible surfaces (in Section 3.3). Three-manifolds associated with these surfaces
had been obtained with help of the Dehn surgery (Dehn filling) from the “parent” 3-manifold
(e.g. see Remark 3.8) which is just that for the figure eight complement inS3. Neumann
and Zagier [93] in the benchmark paper had developed a sort of perturbative calculations
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which allow to estimate volumes of 3-manifolds obtained from the parent 3-manifold by
the operation of Dehn filling. In particular, for the decendants of the figure eight hyperbolic
manifolds, they obtained the following estimate for the volume ofM(p, q) 3-manifold:

Vol(M(p, q)) = Vol(M8)− 2
√

3π2

p2 + 12q2
+ 4

√
3(p4 − 72p2q2 + 144q4)π4

3(p2 + 12q2)4
+ · · · ,

(5.18)

where Vol(M8) is known to be 2.0298832. . .. The obtained result is the simplest in the
chain of results obtained in this reference. In general, Vol(M(p, q)) < Vol(M) whereM
is parental 3-manifold. This constitutes the essence of Thurston’s [18,75] Dehn surgery
theorem.

In our previous work [24], we had considered 3-manifolds with cusps, in particular,
the 3-manifold for the figure eight knot contains just oneZ ⊕ Z cusp. It can be shown,
e.g. see the Appendix C, that all hyperbolic 3-manifolds associated with knots and links are
Z⊕Z cusped: one cusp for each embedded circleS1. Hence, such manifolds are necessarily
noncompact but, nevertheless, of finite volume. Surely, there are 3-manifolds without cusps
too and these are related to those with cusps. According to Thurston [18, Section 5.33], all
3-manifoldsM(p, q) obtained by Dehn filling are without cusps. And, moreover,

lim
(p,q)→∞

Vol(M(p, q)) = Vol(M). (5.19)

Obtained result is naturally extendable to the case ofk-cusped manifolds. By introducing
notations

Mk = M(p1,q1,...,pk,qk),

the following general result was obtained by Neumann and Zagier [93]

Vol(Mk) = Vol(M)− π

2

k∑
i=1

Li + O(L2
i ), (5.20)

whereLi is the length of short geodesicγi on Mk which is just the length of the core
curve of the solid torus added atith cusp. The result of major importance for us is the
observation by Neumann and Zagier that the difference of volumes depends to a high order
only on the geometry of cusps and not on the rest ofM [93]. Given this observation,
the following question can be asked immediately: is it possible to reobtain the results
Eqs. (5.13)–(5.15) for cusped 3-manifolds? The answer is Yes! if these manifolds belong to
the arithmetic hyperbolic 3-manifolds. We provide a condensed summary of results related
to such manifolds in the Appendices B and C while in the main text we discuss the scattering
theory for such manifolds.

5.4. Scattering theory for arithmetic 3-manifolds

Let us begin with observation that Eq. (5.12) is valid for anyd ≥ 1. Accordingly, the
asymptotic expansion, Eq. (5.13), also survives and acquires the following form (forH 3):
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E(y, δ) = yδ/2 +ΦΓ (δ)y
2−d/2 + O(e−cy) (5.21)

with c being some constant. The question immediately arises: will theS matrix ΦΓ (δ)
have the same form as in Eq. (5.14)? In general, the answer is “NO” but for the arithmetic
3-manifolds the answer is “Yes” as had been demonstrated by Sarnak [25]. It is instructive
to restore some of his calculations now. In order to do so, we have to think about the ways
the group PSL(2,Z) can be extended in order to be used for description of 3-manifolds
associated with the punctured torus bundle.

To this purpose, we notice that the group PSL(2,Z) is just a subgroup of PSL(2,R)
which is group of isometries ofH 2. The group of isometries ofH 3 is PSL(2,C) as is
well known [24]. Hence, we have to figure out what kind of subgroup of PSL(2,C) is
analogous to PSL(2,Z). This problem was actually solved for the torus bundles in [94]
and for surfaces of higher genus in very important paper by Margulis [29] to be discussed
further in Appendix C. For the torus bundles, naturally, one should try to find solutions of
Eq. (2.7) in the complex domain. In [94], it was shown that the complex counterpart of the
triple (3,3,3) is(

3 + √−3

2
,

3 + √−3

2
,

3 − √−3

2

)
, (5.22)

and the rest of triples can also be obtained. The numbers above are integers which belong to
the ring of integersO3 in the quadratic number fieldQ(

√−3), e.g. read Appendix B. Hence,
for the punctured torus bundle the analog of PSL(2,Z) is PSL(2,O3) and the punctured
torus fiber bundle is 3-orbifoldH 3/PSL(2,O3) as was proven rigorously in [94]. The
question remains: can this result be generalized to the noncompact (i.e. having punctures
(or cusps)) 3-manifolds originating from automorphisms of Riemann surfaces of genus
higher than one? The answer is “Yes”, provided that discrete group of isometries is Bianchi
group PSL(2,Od), where

−d = 1,2,3,5,6,7,10,11,14,15,19,23,31,35,39,47,55,71,95,119. (5.23)

This remarkable result can be found in [95]. What is even more remarkable is that it is just a
refinement of the very comprehensive work by Bianchi [27] which was completed already
in 1892! Reid [96, Proposition 1], had proved the following theorem.

Theorem 5.1. Every non-compact arithmetic Kleinian group is conjugate inPSL(2,C) to
a group commensurable with some Bianchi groupPSL(2,Od).

Remark 5.2. (a) The definition of arithmeticity is rather involved and is discussed in the
Appendices B and C. The above theorem is complementary to the theorem by Margulis (e.g.
Theorem C.11 of Appendix C), which is much more comprehensive. (b) The noncompact-
ness implies existence of the parabolic peripheral subgroups (e.g. see Section 2). (c) The
notion of commensurability between groups can be found, e.g. in [97], and is associated
with set theoretical definition of overlap (i.e.∩) between sets.
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Corollary 5.3. Every cusped arithmetic hyperbolic3-orbifold is commensurable with
Bianchi orbifoldH 3/PSL(2,Od), whereOd is ring of integers in the quadratic number
fieldQ(

√−d).

Remark 5.4. (a) There is one-to-one correspondence between the ringsS1 (in some (arith-
metic) link) and the cusps, e.g. read Appendix C for more details. (b) The non-compactness
is caused by cusps. (c) Cusped 3-manifolds do have finite volume (e.g. read Section 5.3
again). (d) The arguments of Section 5.1 strongly suggest that 3-manifold associated with
the figure eight knot is arithmetic. This is rigorously proven by Reid [96], who also proved
that the figure eight is the only knot which is arithmetic. (e) Corollary 5.3 and Eq. (5.23)
suggest that there is a countable infinity of arithmetic links.

Being armed with these results, we can now discuss the results of Sarnak [25]. To this
purpose, we have to rewrite Eq. (5.7) in a more convenient (for the present purposes) form.
We have (z = x + iy)

E(y, δ) = yδ/2 +
∞∑
c=1

∑
(c,d)=1

∞∑
m=−∞

1

[(c(x +m)+ d0)2 + c2y2]δ/2
, (5.24)

[11, pp. 171–172]. Here in the second sum summation is overd provided thatc andd are
relative primes, i.e.(c, d) = 1, d = d0 + mcand 0≤ d0 < c. The summation procedure
is explained in great detail in the same reference. In the Sarnak’s case one needs only to
replacex by z andy by t (t > 0) (in theH 3 model realization of hyperbolic space). The
details of calculations can be found in [25] so that the final result, indeed, has the form given
by Eq. (5.21) where for the quadratic number fieldQ(

√−d) of class number one (e.g. read
Appendix B for explanation of terminology)ΦΓ (δ) is given by

ΦΓ (δ) = π

V (FL)(
1
2δ − 1)

ζd(
1
2δ − 1)

ζd(
1
2δ)

(5.25)

with V (FL) being defined as

V (FL) =
{

1
2

√
D if D = 3(mod 4),

√
D if D 6= 3(mod 4),

(5.26)

provided that

d =
{−D if D = 3(mod 4),

−4D if D 6= 3(mod 4).

Since, according to Appendix B, Eq. (B.12), the Dedekind zeta functionζd(s) has the same
pole as the ordinary zeta function, the result, Eq. (5.21), can be used instead of earlier
obtained Eq. (5.14). This time, however, one can get much more. In particular, one can get
the volumeV (FD) of the associated cusped hyperbolic 3-manifold. The expression for the
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volume is known to be [18,25,97]

V (FD) = |d|3/2 ζd(2)
4π2

. (5.27)

This result can be obtained directly from the Eisenstein series, Eq. (5.24). It comes as the
residue at the pole12δ = 2 of the Dedekind zeta function in the numerator of Eq. (5.25)
[25]. That is

Res

[
E(y, δ),

δ

2
= 2

]
= V (FL)

V (FD)
. (5.28)

Since both the residue andV (FL) are known, the volume, Eq. (5.27), is obtained using
Eq. (5.28).

Consider now generalization of the obtained results to the case of multiple cusps, i.e. to
the arithmetic links (e.g. see Appendix C). Following Efrat and Sarnak [26], and also [97],
consider a complete set{κ1 = ∞, κ2, . . . , κn} of the nonequivalent cusps and letΓi be a
subgroup ofΓ ⊂ PSL(2,C) for whichκi is the fixed point, i.e.Γi is stabilizer inΓ of the
ith cusp. It is always possible to select transformationρi(κi) = ∞ whereρi ∈ Γ . Then,

ρiΓiρ
−1
i =

(
1 ω

0 1

)
, (5.29)

which coincides with the matrixU1 defined in Eq. (C.1) withω being a unit of quadratic
number field. For each cusp one can define its own Eisenstein series analogous to Eq. (5.7).
Also, by analogy with Eq. (5.21) we write now

Ei(y, δ) = δi,j y
δ/2 +Φi,j (δ)y

2−δ/2, i, j = 1, . . . , n. (5.30)

It can be shown that theS matrixΦi,j obeys the matrix equation

E(y, δ) =888888888(δ)E(y,2 − δ), (5.31)

which is analogous to Eq. (5.15) discussed earlier. Finally, the analog of Eq. (5.14) is the
determinant of the matrix888888888(δ) given by

det888888888(δ) = const
ξH(

1
2δ − 1)

ξH(
1
2δ)

(5.32)

to be compared with Eq. (5.25).ξH(s) for the quadratic number field of class number one
is given by

ξH(s) =
(√

d

2π

)s
Γ (s)ζH(s) (5.33)

with ζH(s) being defined by

ζH(s) =
∏
χ

L(s, χ). (5.34)

It should be noted that the above product over characters (which are specific for each
quadratic field) always starts withχ = 1. This producesL(s,1) = ζ(s) where, again,
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ζ(s) is usual Riemann zeta function. Hence, again, the singularities of the determinant
are just those for the ratio of zeta functions as in Eq. (5.4). Hence, the exact partition
function for 2+ 1 gravity is given by the determinant det888888888, Eq. (5.32), of the scatteringS
matrix888888888.
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Appendix A. Phase transitions in2 + 12 + 12 + 1 gravity: analogy with Bose condensation

Although in Section 4 the limiting value of the partition function, Eq. (4.13), is obtained
in a systematic way [8,9], the extraction of useful information from this result is plagued by
some serious problems as was noticed already in earlier work of Cvitanovic [14]. The result,
Eq. (4.13), is obtained as limiting value of the Farey spin chain partition function whose
size tends to infinity. Since in Section 5 we generalize the punctured torus results to surfaces
of higher genus, the analogy with spin chain cannot be straightforwardly extended. Hence,
we need to develop methods of extraction of useful information without being dependent
on spin chain analogy.

The main difficulty with Eq. (4.13) lies in the fact that it contains singularities. This can
be easily demonstrated if we notice that for large values ofn the Euler totient function
φ(n) ∼ n [44]. This observation allows us to write

Ẑ(β) ≤ ζ(β − 1). (A.1)

Sinceζ(β − 1) is singular atβcr = 2 one is faced with the problem of removing this
singularity in physically acceptable way. There are many ways of doing so but it is not our
purpose here to provide a complete list of possibilities. Rather, we would like to notice the
following. First, by direct numerical calculation one observes that for largeβ ’s the partition
functionẐ(β)approaches 1. So that, indeed, for low “temperatures” the free energy is zero in
accord with earlier results [8,9]. The authors of these papers claim thatẐ(β) is zero as soon as
β > 2. This can be understood only if one considers finite number terms in the corresponding
zeta functions and takes the thermodynamic limit using Eq. (4.8). To be consistent, we need
to do the same forβ < 2. This is not a simple task, however, since according to Knauf
[9, p. 428], “for high temperatures(β < 2), the analytic continuation of̂Z(β) cannot be
directly interpreted as the partition function of the infinite chain”. This statement is rather
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pessimistic, especially, if one is thinking about extension of obtained results to surfaces of
higher genus. Therefore, we offer here a somewhat different interpretation of the obtained
results.

To this purpose, let us introduce new functiongβ(α) defined by the following equation:

gβ(α) =
∞∑
n=1

αn

nβ
= 1

Γ (β)

∫ ∞

0
dx

xβ−1

α−1 ex − 1
. (A.2)

Such type of functions are well known from the theory of Bose–Einstein (B–E) condensation
[98]. The analogy, unfortunately, is not complete since in the case of B–E condensation the
exponentβ − 1 is never zero or less than zero. Evidently, forα = 1 we obtain back the
Riemann’s zeta function. The parameterα is related to the chemical potentialµ in a usual
way. Forµ = 0 we haveα = 1. This value ofα is associated with singularity which has
physical interpretation. In properly chosen system of units equation which connects the
chemical potential with the particle densityρ = N/V in B–E case reads [98]

ρ = g3/2(α)+ 1

V

α

1 − α
, (A.3)

whereV is volume of the system andN the total number of particles. The second term
in the r.h.s. represents the density of Bose condensate associated with zero translational
mode. For finite volume this density is infinite forα = 1. Therefore, as usual, it is assumed
that both the volume and the density tend to infinity in such a way that the ratio is finite
number. In our case, we do not have the luxury of having volume term but we can extract
the singularity in a manner similar to the B–E gas. Taking into account Eqs. (A.1)–(A.3) we
can subdivide the domain of integration into two parts: (a) 0≤ x ≤ 1 and (b) 1≤ x ≤ ∞.
In the first case, we obtain

I1 =
∫ 1

0
dx xβ−3 = 1

β − 2
, (A.4)

which is expected singularity of the zeta function at already known critical valueβcr = 2.
As for the second part, we obtain (close to criticality)

I2 =
∫ ∞

1
dx

xβ−2

ex − 1
'
∫ ∞

1
dx

1

ex − 1
+ (β − 2)

∫ ∞

1
dx

ln x

ex − 1
+ · · · . (A.5)

Combining Eqs. (A.4) and (A.5) we obtain as well,

I = 1

ε
(1 + c1ε)(1 + c2(β)ε

2 + · · · ), (A.6)

whereε = β − 2 andc1, c2(β) are known constants. In particular, 0.373< c2 < 0.5438
for 1 ≤ β ≤ 2. Taking into account thatΓ (β) is nonsingular in the range ofβ ’s which is
physically interesting, we can subtract the singular part along with well behaving regular
part in order to get

−βF(β) = ln(1 + c2(β)ε
2 + · · · ) ≥ c2(β)ε

2. (A.7)
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This result coincides almost exactly with the estimate, Eq. (2.5), obtained in [8] (the con-
stantc2 is ≈ 0.25 in [8]) for the free energy in the high temperature “disordered” (or
pseudo-Anosov) phase. Hence, the rest of arguments of [8] now can be used. In particular,
we have

−βF(β) =
∫ 2

β

U(x)dx ≤ U(β)(2 − β). (A.8)

Using this result, we obtain

U(β) ≥ − βF(β)

(2 − β)
≥ c2(β)(2 − β), 1 ≤ β ≤ 2, (A.9)

in complete accord with Eq. (4.15) of the main text.

Remark A.1. (a) The analogy with Bose gas condensation can be strengthened, perhaps,
even more if one notices that the criticality conditionβcr = 2 coincides with the simple
estimate made in famous Kosterlitz and Thouless paper [22]. In this paper, the Coulomb
gas model is used for description of phase transitions in two-dimensional liquid crystals,
liquid helium, etc. This, in part, explains the success of such type of models prevailing so
far in physics literature [19]. (b) In the case of liquid helium Feynman [99] had obtained
equation very similar to Eq. (A.3) and Landau and Lifshitz [100, Section 27] also resort
to a simple subtraction of the undesirable singularity at zero temperatures. Hence, intuitive
physical arguments may provide a reliable guidance needed for further refinements of the
results just presented.

Appendix B. Some results from the algebraic number theory

Theory of arithmetic hyperbolic manifolds has strong connections with the algebraic
number theory [101,102]. In this section, we provide a condensed summary of ideas on
which such theory is based. Selection of topics is, naturally, subjective and is meant only
to encourage interested reader to read much more comprehensive texts.

Development of number theory is associated with the desire to extend a simple idea,
known to nonprofessionals, that every nonnegative integern can be uniquely represented
as

n = p
α1
1 · · ·pαkk , (B.1)

wherepi is some prime number andαi ≥ 0 is some integer. This result becomes much less
obvious if one is willing to extend it, say, into domain of complex or algebraic numbers.
For instance,

6 = 2 · 3 = (1 + √−5)(1 − √−5) = (4 +
√

10)(4 −
√

10). (B.2)

Such nonuniqueness is highly undesirable since many theorems of usual arithmetic break-
down. Solution of the nonuniqueness problem is one of the major tasks of the modern
number theory.
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Let us define a rational numberξ = p/q as a root of the equation

qξ − p = 0 (B.3)

withp andq being some integers. An integer is then a root of an equation with first coefficient
q = 1. Analogously, an algebraic numberξ is any root of an algebraic equation

anx
n + an−1x

n−1 + · · · + a0 = 0, (B.4)

where the coefficientsan, . . . , a0 are rational integers. Accordingly, an algebraic integer is
any root of the monic polynomial, e.g. see Eq. (3.22).

Remark B.1. Since only fibered knots and links are relevant for dynamics of 2+1 gravity,
e.g. read Section 3, and since such knots/links are associated with monic Alexander poly-
nomials, we conclude that the arithmeticity is an intrinsic property of 2+ 1 gravity. Surely,
much more is associated with this observation as we shall demonstrate shortly.

In particular, let us consider the module (i.e. the set which is closed under operations of
addition and subtraction) of quadratic integers, i.e. those, originating as roots of quadratic
equation witha2 = 1. We had discussed the roots of such equations already, e.g. see
Eqs. (3.2), (3.9), (3.18) and (3.35). Now we know that all these roots are quadratic integers.
As with usual (rational) integers, it is important to define the units, especially if we would
like to go from the module to a ring (which is module where the multiplication operation
is defined which keeps all the members of the set within the set) or to a field (where, in
addition, the operation of division is defined). It is clear that the typical representative of a
quadratic integerξ should look like

ξ = a + b
√
d

c
, (B.5)

wherea, b, c andd are some integers. Moreover, more detailed analysis shows thatd can
be chosen as square-free. Let us notice, that in the case ifd = −1, we obtain more familiar
field of complex numbers. Geometrically, the integer lattice in such field can be built using
the basis [1, i]. Therefore, in general case we can think of a basis [1, ω] where

ω = 1
2(d +

√
d) (B.6)

with d = D if D = 2,3 ord = 4D if D ≡ 1 (mod 4) e.g. see Eq. (B.8) for explanation of
notations. The square-free numberd is calleddiscriminantof the field. This result confirms,
in particular, that the Markov triple in Eq. (5.22) is indeed made of integers since1

2(3−√−3)
is just the conjugate of12(3 + √−3). For differentd ’s one will have different rings of
quadratic integers. To make rings, once the integers are defined, one should also define the
units. This can be done again by analogy with complex analysis. Using Eq. (B.5) we define
a normN(ξ) as

N(ξ) = ξ · ξ̄ , (B.7)
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whereξ̄ is conjugate ofξ , i.e. the same asξ in Eq. (B.5) but withb → −b. In the number
theory the norm can be both positive and negative. For quadratic imaginary field it is
positive, however. By definition, units are such numbers whose norm is unity. In the case
of usual complex numbers, one has therefore four units:±1 and±i, since in both cases
the norm is one. In the case ofd = −3 ring the units are±1,±ρ,±(1 + ρ) andρ2 where
ρ = 1

2(−1 + √−3), in all other cases the number of units is two [101, p. 156]. The role
of units can be easily understood by analogy with more familiar case of ordinary integers.
That is ifa andb are integers then,a = 1 ·b = b ·1. Units play the same role for the ring of
quadratic numbers. These numbers are calledassociatesif they differ by unit factor. Next,
one definesprimesas those quadratic numbers whose norm is a rational prime. In particular,
we notice, that the Markov triple, Eq. (5.22), is made of primes. Once the primes are defined,
one is naturally interested in finding an analog of Eq. (B.1) for quadratic integers. This
happens to be not a simple task: not alld ’s will lead to unique decomposition into primes.
For reasons which will become clear upon reading of Appendix C, in the case of gravity
only negatived ’s are relevant. Among those which allow unique prime decomposition
are:−d = 1,2,3,7,11,19,43, 67 and 163 [101,102] to be compared with Eq. (5.23).
Such comparison indicates that somed ’s listed in Eq. (5.23) suffer from nonuniqueness.
Such nonuniqueness had lead number theoreticians to introduce the concepts of ideals and
class numbers. Class numbers reflect the extent to which integers of the field deviate from
uniqueness of decomposition. Naturally, if the decomposition is unique, the class number
is one. The ideals can be defined set theoretically and geometrically as follows. Suppose,
we have some setI and a larger setL, then∀α, β ∈ I and∀ξ ∈ L, we have

α + β ∈ I (module property), αξ ∈ I (ideal property).

Geometrically, this can be understood as follows. Consider, without loss of generality,
two-dimensional latticeL built on vectors [1, ω] then, for any rational integern the point
[n, nω] belongs toL. Now one can think of different classes of rational integers and, hence,
of different sublatticesM ⊂ L. This is easily accomplished by introducing the residue
classes modulom. Recall, that notation (equivalence relation)

x ≡ y (modm) (B.8)

means thatx − y = mkwherek is some integer. The above notation is just the statement
that when bothx andy are divided bym they both have the same residues. In particular,
the statementx ≡ 0(modm) means thatm dividesx. Letm have the same presentation as
n in Eq. (B.1), then any numberx relatively prime tommay be determined(modm) by the
equationsx ≡ xi(modpaii ), (xi, pi) = 1, i = 1,2, . . . , k. The number of residue classes is
just the Eulerφ-functionφ(m). Now, if for a given sublatticeM and vectorsx andy ∈ L
we have equivalence relation

x ≡ y (modM), (B.9)

this means only thatx−y ∈M. The number of different sublattices within given lattice (i.e.
the number of different residue classes for ideals) is called indexj . Evidently,j = [L/M].
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Equivalently, it is also called a norm of an idealL so thatj = N[L]. It happens, that in
the case of quadratic fields calculation of the norm is relatively easy [102]. Ifa is quadratic
or rational integer, thenN[L] = a2 = |N(a)|. For both ideals and integers the respective
norms obey the following composition law:

N(a)N(b) = N(ab), (B.10)

N(a)N(b) = N(ab), (B.11)

where the Gothic letters stand for the ideals and the italics for numbers. The question arises:
if there are prime numbers are there prime ideals? The answer is “Yes” and since prime
numbers play the central role in theory of rational integers, one should expect that the prime
ideals play the same role in the number theory. This is indeed the case, but, unlike numbers,
every ideal is decomposable into prime ideals uniquely. This is the main reason why these
objects were introduced.

Remark B.2. In the case of “quadratic fields” there is one-to-one correspondence between
the “quadratic ideals” and the quadratic forms [101]. We deliberately omit discussion of
this fact to save the space referring interested readers to literature [101–103].

Without going into details of such decomposition, we would like to take advantage of the
composition laws, Eqs. (B.10) and (B.11). To this purpose we need the following theorem.

Theorem B.3. The rational prime p factors in the quadratic number fieldQ(
√
d) (irre-

spective to the sign of d), with accuracy up to multiplication by unit, as follows:

1. p does not factor(p is inert in the field d) if and only if(d/p) = −1,
2. p splits in d into two different factors(e.g. z andz′ which belong toQ(

√
d)) if and only

if (d/p) = −1,
3. p is ramified in d(i.e.p = z2) if and only if(d/p) = 0.

In the above cases(d/p) is the Kronecker symbol which sometimes is denoted asχ(p)

for fixedd. χ(p) is actually a character (the Dirichlet’s character to be exact) of an Abelian
group, e.g. ofL/M. This symbol should not be confused withδij known in physics. At the
same time, the above theorem may serve as a definition of such a symbol. We shall adopt
this point of view in this work. Then, by analogy with the theorem just stated, one can
formulate the analogous theorem for the ideals [102].

Theorem B.4. The quadratic prime ideals(p) are related to integers p in the rational field
in the following possible ways:

1. (p) = (p), or (p) does not factor, i.e. inert, thenN(p) = p2;
2. (p) = p1p2, or (p) splits, thenN(p1) = N(p2) = p;
3. (p) = p21, or (p) ramifies, thenN(p1) = p.
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Being armed with such results, we are ready to introduce the zeta function for the field
whose discriminant isd:

ζd(s) =
∑
a

[NNN(a)]−s =
∏
p

(1 − [NNN(p)]−s)−1, (B.12)

where the last product is over all prime ideals. In view of Theorem B.4, this result can be
rewritten in more familiar terms as follows:

ζd(s) = ζ(s)

∞∑
n=1

(d/n)

ns
≡ ζ(s)L(s; d), (B.13)

whereL(s, d) is known in the literature as the DirichletL-series. It can be shown [101–103]
that such defined zeta function is having a pole singularity only ats = 1, i.e. the singularity
only comes from the usual zeta function. The residue of the pole ats = 1 is much more
interesting in the present case as it is explained in the main text in Section 5. Finally, we
need an ideal analog of the Euler totient functionφ(n). To this purpose, we take into account
that an analog of Eq. (B.1) is the same equation in which all numbers are replaced by the
ideals. Then, for an ideala we have

888888888(a) = N(a)
∏
p/a

(
1 − 1

N(p)

)
, (B.14)

wherep runs through the distinct prime divisors ofa.

Appendix C. Connections between the knot theory, theory of hyperbolic spaces and
the algebraic number theory: implications for 2 + 12 + 12 + 1 and 3 + 13 + 13 + 1 gravity

For the sake of saving space and to avoid repetitions, we expect our readers to be familiar
with our earlier work [24], while reading this section. Let us begin with the group PSL(2,C)
of isometries of hyperbolic spaceH 3. Only discrete subgroups of PSL(2,C) known as
Kleinian groups are of interest [97]. The group PSL(2,C) is just the projectivized version
of SL(2,C). The following theorem for SL(2,C) is of particular interest [97, Chapter 1].

Theorem C.1. The group SL(2,C) is generated by two elements

U1 =
(

1 a

0 1

)
, U2 =

(
0 −1
1 0

)
, a ∈ C. (C.1)

Remark C.2. This theorem is an analog of the well-known fact [104] that the group
PSL(2,Z) can be generated by the same two elements (upon projectivization) witha = 1.
Hence, the parabolic elements play a very special role in PSL(2,C) too.

The parabolic subgroups of PSL(2,C)are Abelian subgroups associated withZ andZ⊕Z
cusps. IfΓ ∈ PSL(2,C) contains an Abelian subgroup of rank one, i.e.Z-cusp, then the
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associated fundamental domain forΓ is non-compact and of infinite volume [28]. Hence, of
no interest to us (additional reasons are given below). If, however,Γ ∈ PSL(2,C) contains
an Abelian subgroup of rank two, i.e.Z ⊕ Z cusp, then the groupΓ is not cocompact but
of finite covolume. The following theorem was used in our earlier work, [24], and can be
stated now as follows:

Theorem C.3. LetΓ ∈ PSL(2,C) be a discrete group of finite covolume, thenΓ has only
finitely many classes of cusps.

The proof can be found in [97, Chapter 2, Proposition 3.8]. To insure that the subgroup
Γ is discrete the following theorem is the most helpful [97].

Theorem C.4(Jorgensen’s inequality).If 〈A,B〉 is non-elementary discrete subgroup of
PSL(2,C), then, the following inequality holds:

|tr2A− 4| + |tr[A,B] − 2| ≥ 1. (C.2)

Remark C.5. (a) In the case of punctured torus extension of Markov triples Eqs. (2.7) and
(2.8) to the field of quadratic integers was discussed in Appendix B and in the original works
[34,94]. Such an extension is in accord with Jorgensen’s inequality. (b) This observation
provides us with an easy way of defining the arithmetic Kleinian groups and, hence, the
arithmetic 3-manifolds. To this purpose, we need still one more theorem [94].

Theorem C.6. Let A1, A2, . . . , An ∈ SL(2,C) be such thatA1 is not parabolic and
〈A1, A2〉 is not elementary. Then, theA1, A2, . . . , An are determined up to conjugacy
in SL(2,C) byTrAi , TrAiAj andTrAiAjAk with i, j, k ∈ {1,2, . . . , n}.

Remark C.7. The arithmetic Kleinian groups can be regarded as images in PSL(2,C) of
subgroups of SL(2,C) so that the trace of an element in the Kleinian group is defined up to
a sign. The traces TrAi belong to the field of quadratic integers with negative discriminant
d. The negativity ofd is explained shortly below.

Following [105, Theorem E.4.4, p. 192], and also Riley [28] consider complement of a
link L in S3 (which is just a union of knotsL1, . . . ,Lk). To this purpose, letTi be an open
tubular neighborhood of the knotLi (that isTi is a solid torus with boundary removed).
Then, the following theorem holds.

Theorem C.8. Given a compact3-manifold N there exists a linkL in S3 which is union of
knotsL1, . . . ,Lk, such that N is obtained from the manifold

M = S3 \

 ⋃
i=1,...,k

Ti


 ,
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whereTi ’s are pairwise disjoint open tubular neighborhoods of the knotsLi ,by the operation
of Dehn filling.
Corollary C.9 (Riley and Thurston [18,28]).If M is to be hyperbolic, then every non-cyclic
Abelian subgroup(of rank two) ofπ1Mmust be peripheral and correspond to the component
Li of linkL.

Remark C.10. Since the fundamental groupπ1M can be embedded into PSL(2,C) and
since the non-cyclic peripheral (see e.g. Section 2 for definition) Abelian subgroup of rank
two corresponds toZ ⊕Z cusp there is a one-to-one correspondence between the cusps and
the link components. E.g. in the case of figure eight knot we have hyperbolic 3-manifold
with just one cusp [18,28]. Moreover, and this is the most important, the following theorem
of Margulis [29] requires such cusped 3-manifolds to be arithmetic.

Theorem C.11(G. Margulis). Let S be Riemannian symmetric noncompact space of rank
greater than one andΛ is irreducible discrete group of motions of S such thatS/Λ has
finite volume but noncompact. Then,Λ is the arithmetic subgroup in the group of motions
of space S.

Definition C.12 (Helgason [30], Chapter 5). LetS be the Riemannian globally symmetric
space. The rank ofS is the maximal dimension of a flat, totally geodesic subspaceM. The
subspaceM is geodesic atp ∈ M if eachS-geodesic which is tangent toM atp is a curve
in M. The submanifoldM is totally geodesic if it is geodesic at each of its points.

Remark C.13. To use the above definition, the following alternative interpretation of rank
is helpful. Following Besse [31], letg = h+m be decomposition (into irreducible parts) of
the Lie algebra of the group of motions of spaceS whereh is non andm is Abelian parts.
Then, the rank is the total dimension of the Abelian subalgebram of g.

Remark C.14. SinceH 3 is symmetric space, Margulis theorem implies arithmeticity of
hyperbolic 3-manifolds withZ ⊕Z cusps. In the case of one cusp the complement of figure
eight knot hyperbolic 3-manifold is indeed arithmetic as it was shown independently by
Reid [96]. The arithmeticity can actually be anticipated based on the results of our Section 3.
Indeed, since surface automorphisms are associated with the roots of the monic Alexander
polynomial whose coefficients are rational integers, these roots lie necessarily in the field of
quadratic integers. The Seifert-fibered phase is associated with units of the field while the
pseudo-Anosov with nonunit integers. Since these stretch factors are related to the traces
of the corresponding matrices, e.g. see Eq. (2.15), connection with Theorem C.6 is clear.

Remark C.15. Since Margulis theorem is not limited to groups of motions ofH 3, its
application can be extended to 3+ 1 gravity. According to Besse [31, Chapter 10] every
irreducible symmetric space is Einstein space. The classification of irreducible symmetric
spaces was made by Helgason [30] and is also cited in Besse’s book. From this classification
it follows that most of such spaces have rank higher than 1 and, hence, should be arithmetic.
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It would be interesting to know if there is an analog of Theorem C.3 for Einstein spaces.
This is of interest because, from the discussion we had in Section 5, it follows that the cusps
act very much like black holes, e.g. see Fig. 11 (except in 2+1 case the “particle” cannot be
trapped by the “black hole”) and, therefore, the role of black holes in the Universe acquires
new meaning: they make our Universe arithmetic. If this is the case, then the Universe
becomes something like a crystalline solid which potentially can undergo phase transitions
between lattices of different symmetry. The symmetry of the lattice is determined by the
discriminant of the quadratic number field.

Remark C.16. The connection between the cusps and the black holes is not purely visual,
e.g. Fig. 11, or formal. It is real, at least for 2+ 1 Euclidean black hole! Indeed, following
Carlip [21, p. 50] by the appropriate choice of coordinates and units the metric of the
Euclidean black hole becomes that ofH 3, i.e.

(ds)2 = (dx)2 + (dy)2 + (dz)2

z2
,

provided that in addition the following identification is made:

(x, y, z) ∼ e2πr+(x cosh 2πr+ − y sinh 2πr+, y cosh 2πr+ − x sinnh2πr+, z),

which is easily recognizable asZ ⊕ Z cusp [24].

Remark C.17. The reasons for existence of black holes in nature were discussed in the past
[106]. Ironically, the same author had came to the opposite conclusions in [107], i.e. the
black hole singularity is fictitious. The same conclusion is reached in [108] which claims
that two-dimensional quantum black holes are nonsingular.

Now we have to explain why this discriminant should be negative. For one thing, if it
would be positive the norm of the quadratic field would be negative. This is unphysical
in view of Remark C.14. There are other reasons in addition which we would like now to
explain. Let us begin with famous example by Riley [109] who considered the mapping
of the fundamental groupπ8 of the complement of figure eight knot into PSL(2,C). The
fundamental groupπ8 is free non-Abelian group composed of two generators which has
the following presentation:

π8 = 〈x1, x2;wx1 = x2w〉, (C.3)

wherew = x−1
1 x2x1x

−1
2 . The homomorphism ofπ8 into PSL(2,C) can be achieved with

help of the Theorem C.1 as follows:

x1 → A =
(

1 1
0 1

)
, x2 → B =

(
1 0

−ω 1

)
, (C.4)

whereω is some number, different from 1 and to be determined below. The matrixB is just
a conjugate ofU2 in Eq. (C.1), i.e.B = U1U2U

−1
1 with a ↔ ω. Since these matrices should
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obey the relationwx1 = x2w, replacementsx1 → A andx2 → B produce the following
equation forω:

ω2 + ω + 1 = 0 (C.5)

with solutionω = 1
2(−1 + √−3). One can easily recognize the unitρ of the quadratic

field with discriminant 3 (from Appendix B). Hence, figure eight knot is indeed arithmetic.
From this example, it should be clear, that the arithmeticity is associated with our choice of
ω.

Consider now the subgroup of PSL(2,C)which fixesj (i.e. in the upper space modelH 3

with coordinatesz + jt (z = x + iy, t > 0) we are looking for the Möbius transformation
M(j) = j ). It is easy to prove [97] that such transformation is associated with SL(2,C)
matrix of the type

M =
(
x y

−ȳ x̄

)
, (C.6)

such that detM = |x|2 + |y|2 = 1 where|x|2 = xx̄ and x̄ is a complex conjugate of
x, etc. Such matrixM is in one-to-one correspondence with the fieldH of quaternionsq
known in physics literature as Hamiltonian quaternions [110]. Such quaternions usually are
represented asq = a + bi + cj + dk wherea, b, c, d are real numbers and k= ij. In terms
of quaternions Eq. (C.6) can be written as

M(q,H) =
(
a + bi c + d i

−c + d i a − bi

)
. (C.7)

Surely, if we write i = √−1, then the above matrix represents the most general matrix
associated with the unit of the imaginary quadratic field with discriminantd = −1. Natu-
rally, one can therefore think of the most general matrix associated with units of imaginary
quadratic fields with discriminantd other than−1. To this purpose, one needs to extend the
notion of quaternions known in physics.

LetK be the number field of characteristic different from two (the characteristicp of the
fieldK is associated with subdivision of the field into residue classesZp, sop 6= 2 andp is
prime) and leta, b ∈ K be two non-zero elements. A quaternion algebraH(a, b;K) overK
is generated by elements i and j satisfying i2 = a, j2 = b and ij = −ij. The elements 1, i, j, ij
form aK-basis ofH(a, b;K) as a vector space. The pair(a, b) is called the Hilbert symbol
for H. In particular, for Hamiltonian quaternions the field isR and the Hilbert symbol is
(−1,−1). If L is the field extension ofK with

√
a and

√
b ∈ L then, repeating all the steps

leading to Eq. (C.7), we obtain

M(2, L) =
(

x0 + x1
√
a x2

√
b + x3

√
ab

x2
√
b − x3

√
ab x0 − x1

√
a

)
. (C.8)

Newman and Reid [111] proved the following major theorem.

Theorem C.18. LetΓ be a non-compact Kleinian group of finite covolume. Then
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1. Γ is arithmetic if and only if the trace field(e.g. see TheoremC.6)K = Q(
√−d) for

some square-freed ∈ N (e.g. see Eq.(5.23))andtr Γ consists of algebraic integers.
2. Γ is derived from the quaternion algebraH(a, b;K) if and only iftr Γ ⊂ Od for some

d.
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